• Title/Summary/Keyword: optical bandgap

Search Result 194, Processing Time 0.03 seconds

Coupling of W-Doped SnO2 and TiO2 for Efficient Visible-Light Photocatalysis

  • Rawal, Sher Bahadur;Ojha, Devi Prashad;Choi, Young Sik;Lee, Wan In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.913-918
    • /
    • 2014
  • Five mol % tungsten-doped tin oxide ($W_{0.05}Sn_{0.95}O_2$, TTO5) was prepared by co-precipitation of $SnCl_4{\cdot}5H_2O$ and $WCl_4$, followed by calcination at $1000^{\circ}C$. The as-prepared TTO5 was in the pure cassiterite phase with a particle size of ~50 nm and optical bandgap of 2.51 eV. Herein it was applied for the formation of TTO5/$TiO_2$ heterojunctions by covering the TTO5 surface with $TiO_2$ by sol-gel method. Under visible-light irradiation (${\lambda}{\geq}420$ nm), TTO5/$TiO_2$ showed a significantly high photocatalytic activity in removing gaseous 2-propanol (IP) and evolving $CO_2$. It is deduced that its high visible-light activity is caused by inter-semiconductor holetransfer between the valence band (VB) of TTO5 and $TiO_2$, since the TTO5 nanoparticle (NP) exhibits the absorption edge at ~450 nm and its VB level is located more positive side than that of $TiO_2$. The evidence for the hole-transport mechanism between TTO5 and $TiO_2$ was also investigated by monitoring the holescavenging reaction with 1,4-terephthalic acid (TA).

Fabrication and Its Characteristics of HgCdTe Infrared Detector (HgCdTe를 이용한 Infrared Detector의 제조와 특성)

  • 김재묵;서상희;이희철;한석룡
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • HgCdTe Is the most versatile material for the developing infrared devices. Not like III-V compound semiconductors or silicon-based photo-detecting materials, HgCdTe has unique characteristics such as adjustable bandgap, very high electron mobility, and large difference between electron and hole mobilities. Many research groups have been interested in this material since early 70's, but mainly due to its thermodynamic difficulties for preparing materials, no single growth technique is appreciated as a standard growth technique in this research field. Solid state recrystallization(SSR), travelling heater method(THM), and Bridgman growth are major techniques used to grow bulk HgCdTe material. Materials with high quality and purity can be grown using these bulk growth techniques, however, due to the large separation between solidus and liquidus line on the phase diagram, it is very difficult to grow large materials with minimun defects. Various epitaxial growth techniques were adopted to get large area HgCdTe and among them liquid phase epitaxy(LPE), metal organic chemical vapor deposition(MOCVD), and molecular beam epitaxy(MBE) are most frequently used techniques. There are also various types of photo-detectors utilizing HgCdTe materials, and photovoltaic and photoconductive devices are most interested types of detectors up to these days. For the larger may detectors, photovoltaic devices have some advantages over power-requiring photoconductive devices. In this paper we reported the main results on the HgCdTe growing and characterization including LPE and MOCVD, device fabrication and its characteristics such as single element and linear array($8{\times}1$ PC, $128{\times}1$ PV and 4120{\times}1$ PC). Also we included the results of the dewar manufacturing, assembling, and optical and environmental test of the detectors.

  • PDF

The Effect of Boron Doped CdS Film on CdS/CdTe Solar Cell (CdS 박막의 boron doping에 따른 CdS/CdTe 태양전지 특성)

  • Lee, H.Y.;Lee, J.H.;Kim, J.H.;Park, Y.K.;Shin, J.H.;Shin, S.H.;Park, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1370-1372
    • /
    • 1998
  • Boron doped CdS films were prepared by CBD(Chemical Bath Deposition) method using boric acid ($B_3HO_3$) as donor dopant source, and their properties were investigated. As-grown CdS films were highly adherent and specularly reflective. Boron doped CdS film which was fabricated under the condition of 0.01 $B_3HO_3/Cd(Ac)_2$ mole ratio, exhibited the lowest resistivity of $2{\Omega}cm$ and the highest optical bandgap of 2.41eV. Also, CdS/CdTe solar cells were fabricated with various doping concentration of CdS films. Using optimized CdS film as the window layer of CdS/CdTe solar cell, the characteristics of the cell were improved. ( $V_{oc}$=610mV, $J_{sc}$=37.5mA/cm, FF=0.4, $\eta$=9.1% )

  • PDF

SnO2-Embedded Transparent UV Photodetector (SnO2 기반의 투명 UV 광 검출기)

  • Lee, Gyeong-Nam;Park, Wang-Hee;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.806-811
    • /
    • 2017
  • An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.

졸겔 스핀코팅 방법으로 성장된 ZnO 박막에서 씨앗층이 구조적 및 광학적 특성에 미치는 영향

  • Kim, Yeong-Gyu;Park, Hyeong-Gil;Nam, Gi-Ung;Yun, Hyeon-Sik;Kim, Ik-Hyeon;Park, Yeong-Bin;Park, Seon-Hui;Mun, Ji-Yun;Kim, Dong-Wan;Kim, Jin-Su;Kim, Jong-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.291.2-291.2
    • /
    • 2014
  • ZnO 박막(thin film)은 씨앗층(seed layer)의 종류, 두께, 증착 조건 등에 따라 그 특성이 달라지는 것으로 알려져 있다. 이에 본 연구에서는 씨앗층의 종류에 따른 박막의 특성변화를 알아 보기 위해, 졸겔 스핀코팅(sol-gel spin-coating) 방법으로 4가지 종류의 씨앗층(Al-ZnO, Co-ZnO, Cu-ZnO, In-ZnO) 위에 ZnO 박막을 성장 한 후 성장된 ZnO 박막의 구조적, 광학적 특성을 field emission scanning electron microscope, X-ray diffractometer, UV-visible spectrometer를 통해 조사하였다. ZnO 박막의 표면구조는 씨앗층의 종류에 따라 변하였으며, 씨앗층 위에 성장된 ZnO 박막들의 c축 배향성과 결정성이 씨앗층 없이 성장된 ZnO 박막보다 더 우수하게 나타났다. 투과도(transmittance) 측정값을 통해 계산된 광학적 밴드갭(optical bandgap)과 Urbach 에너지는 씨앗층에 따라 다른 값을 나타내었다. 광학적 밴드갭은 Al-ZnO 씨앗층 위에 성장된 ZnO 박막에서 가장 크게 나타났으며, Urbach 에너지는 Co-ZnO 씨앗층 위에 성장된 ZnO 박막에서 가장 낮았다. 따라서 ZnO박막 성장 시 용도에 맞게 적절한 씨앗층을 사용하는 것은 소자의 성능을 향상시키는데 매우 중요한 역할을 할 수 있다.

  • PDF

Effect of Annealing under Antimony Ambient on Structural Recovery of Plasma-damaged InSb(100) Surface

  • Seok, Cheol-Gyun;Choe, Min-Gyeong;Jeong, Jin-Uk;Park, Se-Hun;Park, Yong-Jo;Yang, In-Sang;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.203-203
    • /
    • 2014
  • Due to the electrical properties such as narrow bandgap and high carrier mobility, indium antimonide (InSb) has attracted a lot of attention recently. For the fabrication of electronic or photonic devices, an etching process is required. However, during etching process, enegetic ions can induce structural damages on the bombarded surface. Especially, InSb has a very weak binding energy between In atom and Sb stom, it can be easily damaged by impingement of ions. In the previous work, to evaluate the surface properties after Ar ion beam etching, the plasma-induced structural damage on the etched InSb(100) surface had been examined by resonant Raman spectroscopy. As a result, we demonstrated the relation between the enhanced transverse optical(TO) peak in the Raman spectrum and the ion-induced structral damage near the InSb surface. In this work, the annealing effect on the etched InSb(100) surface has investigated. Annealing process was performed at $450^{\circ}C$ for 10 minute under antimony ambient. As-etched InSb(100) surface had shown a strongly enhanced TO scattering intensity in the Raman spectrum. However, the annealing process with antimony flowing caused the intensity to recover due to the structural reordering and the reduction of antimony vacancies. It proves that the origin of enhanced TO scattering is Sb vacancies. Furthermore, it shows that etching-induced damage can be cured effectively by the following annealing process under Sb ambient.

  • PDF

Characteristics of the Mg and In co-doped ZnO Thin Films with Various Substrate Temperatures (RF 마그네트론 스퍼터를 이용하여 제작한 MIZO 박막의 특성에 미치는 기판 온도의 영향)

  • Jeon, Kiseok;Jee, Hongsub;Lim, Sangwoo;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.4 no.4
    • /
    • pp.150-154
    • /
    • 2016
  • Mg and In co-doped ZnO (MIZO) thin films with transparent conducting characteristics were successfully prepared on glass substrates by RF magnetron sputtering technique. The Influence of different substrate temperature (from RT to $400^{\circ}C$) on the structural, morphological, electrical, and optical properties of MIZO thin films were investigated. The MIZO thin film prepared at the substrate temperature of $350^{\circ}C$ showed the best electrical characteristics in terms of the carrier concentration ($4.24{\times}10^{20}cm^{-3}$), charge carrier mobility ($5.01cm^2V^{-1}S^{-1}$), and a minimum resistivity ($1.24{\times}10^{-4}{\Omega}{\cdot}cm$). The average transmission of MIZO thin films in the visible range was over 80% and the absorption edges of MIZO thin films were very sharp. The bandgap energy of MIZO thin films becomes wider from 3.44 eV to 3.6 eV as the substrate temperature increased from RT to $350^{\circ}C$. However, Band gap energy of MIZO thin film was narrow at substrate temperature of $400^{\circ}C$.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF

Effect of KCN Treatment on Cu-Se Secondary Phase of One-step Sputter-deposited CIGS Thin Films Using Quaternary Target

  • Jung, Sung Hee;Choi, Ji Hyun;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.88-94
    • /
    • 2014
  • The structural, optical and electrical properties of sputter-deposited CIGS films were directly influenced by the sputtering process parameters such as substrate temperature, working pressure, RF power and distance between target and substrate. CIGS thin films deposited by using a quaternary target revealed to be Se deficient due to Se low vapor pressure. This Se deficiency affected the overall stoichiometry of the films, causing the films to be Cu-rich. Current tends to pass through the Cu-Se channels which act as the shunting path increasing the film conductivity. The crystal structure of CIGS thin films depends on the substrate orientation due to the influence of surface morphology, grain size and stress of Mo substrate. The excess of Cu was removed from the CIGS films by KCN treatment, achieving a suitable Cu concentration (referred as Cu-poor) for the fabrication of solar cell. Due to high Cu concentrations on the CIGS film surface induced by Cu-Se phases after CIGS film deposition, KCN treatment proved to be necessary for the fabrication of high efficiency solar cells. Also during KCN treatment, dislocation density and lattice parameter decreased as excess Cu was removed, resulting in increase of bandgap and the decrease of conductivity of CIGS films. It was revealed that Cu-Se secondary phase could be removed by KCN wet etching of CIGS films, allowing the fabrication of high efficiency absorber layer.