DOI QR코드

DOI QR Code

SnO2-Embedded Transparent UV Photodetector

SnO2 기반의 투명 UV 광 검출기

  • Lee, Gyeong-Nam (Department of Electrical Engineering, Incheon National University) ;
  • Park, Wang-Hee (Department of Electrical Engineering, Incheon National University) ;
  • Kim, Joondong (Department of Electrical Engineering, Incheon National University)
  • Received : 2017.10.17
  • Accepted : 2017.11.02
  • Published : 2017.12.01

Abstract

An all-transparent ultraviolet (UV) photodetector was fabricated by structuring $p-NiO/n-SnO_2/ITO$ on a glass substrate. $SnO_2$ is an important semiconductor material because of its large bandgap, high electron mobility, high transmittance (as high as 80% in the visible range), and high stability under UV light. For these reasons, $SnO_2$ is suitable for a range of applications that involve UV light. In order to form a highly transparent p-n junction for UV detection, $SnO_2$ was deposited onto a device containing NiO as a high-transparent metal conductive oxide for UV detection. We demonstrated that all-transparent UV photodetectors based on $SnO_2$ could provide a definitive photocurrent density of $4nA\;cm^{-2}$ at 0 V under UV light (365 nm) and a low saturation current density of $2.02nA{\times}cm^{-2}$. The device under UV light displayed fast photoresponse with times of 31.69 ms (rise-time) and 35.12 ms (fall-time) and a remarkable photoresponse ratio of 69.37. We analyzed the optical and electrical properties of the $NiO/SnO_2$ device. We demonstrated that the excellent properties of $SnO_2$ are valuable in transparent photoelectric device applications, which can suggest various routes for improving the performance of such devices.

Keywords

References

  1. W. Tian, T. Zhai, C. Zhang, S. L. Li, X. Wang, F. Liu, D. Liu, X. Cai, K. Tsukagoshi, D. Golberg, and Y. Bando, Adv. Mater., 25, 4625 (2013). [DOI: https://doi.org/10.1002/adma.201301828]
  2. K. Ravichandran, B. Sakthivel, and P. Philominathan, Cryst. Res. Technol., 45, 292 (2010). [DOI: https://doi.org/10.1002/crat.200900594]
  3. J. Bandara, C. M. Divarathne, and S. D. Nanayakkara, Sol. Energy Mater. Sol. Cells, 81, 429 (2004). [DOI: https://doi.org/10.1016/j.solmat.2003.11.027]
  4. A. Kar and A. Patra, Trans. Indian Ceram. Soc., 72, 89 (2013). [DOI: https://doi.org/10.1080/0371750X.2013.828990]
  5. J. M. Ni, X. J. Zhao, and J. Zhao, J. Inorg. Organomet. Polym. Mater., 22, 21 (2012). [DOI: https://doi.org/10.1007/s10904-011-9619-y]
  6. S. Shao, X. Qiu, D. He, R. Koehn, N. Guan, X. Lu, N. Bao, and C. A. Grimes, Nanoscale, 3, 4283 (2011). [DOI: https://doi.org/10.1039/c1nr10678c]
  7. J. Gong, H. Qiao, S. Sigdel, H. Elbohy, N. Adhikari, Z. Zhou, K. Sumathy, Q. Wei, and Q. Qiao, AIP Adv., 5, 067134 (2015). [DOI: https://doi.org/10.1063/1.4922626]
  8. C. Prasittichai and J. T. Hupp, J. Phys. Chem. Lett., 1, 1611 (2010). [DOI: https://doi.org/10.1021/jz100361f]
  9. H. Peelaers, E. Kioupakis, and C. G. Van De Walle, Appl. Phys. Lett., 100, 011914 (2012). [DOI: https://doi.org/10.1063/1.3671162]
  10. S. H. Yu, C. H. Jia, H. W. Zheng, L. H. Ding, and W. F. Zhang, Mater. Lett., 85, 68 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.06.108]
  11. M. Patel, H. S. Kim, and J. Kim, Adv. Electron. Mater., 1, 1500232 (2015). [DOI: https://doi.org/10.1002/aelm.201500232]