• Title/Summary/Keyword: opposite steel beam

Search Result 7, Processing Time 0.018 seconds

A Basic Study on the Defect Detectability of Austenitic Stainless Steel Weldments using Ultrasonic Testing (초음파를 이용한 Austenitic Stainless Steel 용접부의 결함검출에 관한 기초적 연구)

  • Park, M.H.;Park, K.H.;Seo, D.M.;Yoon, K.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.8-21
    • /
    • 1989
  • This paper presents the ultrasonic characteristics of weldment and detectability of defects of weldment in Austenitic Stainless Steel Type 304 that is composed of mostly coolant piping system in nuclear power plants. The results of this experient show as follows: 1. When the ultrasonic beam detects the defects on the side of base metal and on the opposite side of weldment, the indications which was detected on the screen show different amplitude and different metal path each. 2. The ultrasonically estimated notch depth is generally oversized than actual notch depth. 3. It is easy for the false indication to show up on the screen because of columnar structure of weldment in austenitic stainless steel. 4. The higher frequencies of transducer have more difficulties to detect the defects of the opposite side of weldment because of ultrasonic attenuation in weldment and the longitudinal transmitter-receiver transducer is the most effective in detecting the opposite side defects of weldment.

  • PDF

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.109-126
    • /
    • 2011
  • The inelastic earthquake response of non-symmetric, braced steel buildings, designed according to the EC3 (steel structures) and EC8 (earthquake resistant design) codes, is investigated using 1, 3 and 5-story models, subjected to a set of 10, two-component, semi-artificial motions, generated to match the design spectrum. It is found that in these buildings, the so-called "flexible" edge frames exhibit higher ductility demands and interstory drifts than the "stiff" edge frames. We note that the same results were reported in an earlier study for reinforced concrete buildings and are the opposite of what was predicted in several other studies based on the over simplified, hence very popular, one-story, shear-beam type models. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. In a follow up paper, a design modification will be introduced that can lead to a more uniform distribution of ductility demands in the elements of all building edges. This investigation is another step towards more rational design of non-symmetric steel buildings.

Cyclic performance and design recommendations of a novel weak-axis reduced beam section connection

  • Lu, Linfeng;Xu, Yinglu;Liu, Jie;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • In previous weak-axis moment connection tests, brittle fracture always initiated near the edge of the beam flange groove weld due to force flow towards the stiffer column flanges, which is the opposite pattern as strong-axis moment connections. As part of the China NSFC (51278061) study, this paper tested two full-scale novel weak-axis reduced beam section moment connections, including one exterior frame connection specimen SJ-1 under beam end monotonic loading and one interior frame joint specimen SJ-2 under column top cyclic loading. Test results showed that these two specimens were able to satisfy the demands of FEMA-267 (1995) or ANSI/AISC 341-10 (2010) without experiencing brittle fracture. A parametric analysis using the finite element software ABAQUS was carried out to better understand the cyclic performance of the novel weak-axis reduced beam section moment connections, and the influence of the distance between skin plate and reduced beam section, a, the length of the reduced beam section, b, and the cutting depth of the reduced beam section, c, on the cyclic performance was analyzed. It was found that increasing three parametric values reasonably is beneficial to forming beam plastic hinges, and increasing the parameter a is conducive to reducing stress concentration of beam flange groove welds while increasing the parameters b and c can only reduce the peak stress of beam flange groove welds. The rules recommended by FEMA350 (2000) are suitable for designing the proposed weak-axis RBS moment connection, and a proven calculation formulation is given to determine the thickness of skin plate, the key components in the proposed weak-axis connections. Based on the experimental and numerical results, a design procedure for the proposed weak-axis RBS moment connections was developed.

On resonance behavior of porous FG curved nanobeams

  • She, Gui-Lin;Liu, Hai-Bo;Karami, Behrouz
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.179-186
    • /
    • 2020
  • In this paper, the forced resonance vibration of porous functionally graded (FG) curved nanobeam is examined. In order to capture the hardening and softening mechanisms of nanostructure, the nonlocal strain gradient theory is employed to build the size-dependent model. Using the Timoshenko beam theory together with the Hamilton principle, the equations of motion for the curved nanobeam are derived. Then, Navier series are used in order to obtain the dynamical deflections of the porous FG curved nanobeam with simply-supported ends. It is found that the resonance position of the nanobeam is very sensitive to the nonlocal and strain gradient parameters, material variation, porosity coefficient, as well as geometrical conditions. The results indicate that the resonance position is postponed by increasing the strain gradient parameter, while the nonlocal parameter has the opposite effect on the results. Furthermore, increasing the opening angle or length-to-thickness ratio will result in resonance position moves to lower-load frequency.

Fatigue Strength Evaluation of Steel-Concrete Composite Bridge Deck with Corrugated Steel Plate (절곡강판을 이용한 교량용 강-콘크리트 합성 바닥판의 피로 성능평가)

  • Ahn, Jin Hee;Sim, Jung Wook;Jeong, Youn Joo;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.731-740
    • /
    • 2008
  • This paper deals with the fatigue behavior and strength of a new-type of steel-concrete composite bridge deck. The new-type composite bridge deck consists of corrugated steel plate, welded T-beams, stud-type shear connectors and reinforced concrete filler. A total of eight composite bridge deck specimens were fabricated, the fatigue tests were conducted under four-point bending test with three different stress ranges in constant amplitude. According to the test results, the fatigue crack generated at the welding part of the corrugated steel plate, progressed down to the bottom of the steel plate and encountered the crack, which came out from the opposite side at the same position. After the two cracks were connected at the bottom of the steel plate, the lower flange was cut off and the fatigue crack developed up to the T-beam. And the displacements and strains of fatigue test specimens were increasing with cyclic loading number, these were changed sharply at the fatigue failure. The fatigue results are compared with the design S-N curves specified in the Korea Highway Bridge Design Specifications and data in NCHRP 102 and NCHRP 147 report. The new-type composite bridge deck has a stress category of C, which means that new-type composite bridge deck can be designed by the current fatigue design specifications provided for steel members.

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).