• Title/Summary/Keyword: operator.

Search Result 5,841, Processing Time 0.028 seconds

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

UNITARY INTERPOLATION FOR VECTORS IN TRIDIAGONAL ALGEBRAS

  • Jo, Young-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.431-436
    • /
    • 2003
  • Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx = y. An interpolating operator for n vectors satisfies the equation $Tx_i\;:\;y_i,\;for\;i\;=\;1,\;2,\;{\cdots},\;n$. In this article, we obtained the following : $Let\;x\;=\;\{x_i\}\;and\;y=\{y_\}$ be two vectors in a separable complex Hilbert space H such that $x_i\;\neq\;0$ for all $i\;=\;1,\;2;\cdots$. Let L be a commutative subspace lattice on H. Then the following statements are equivalent. (1) $sup\;\{\frac{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}y\$\mid$}{\$\mid${\sum_{k=1}}^l\;\alpha_{\kappa}E_{\kappa}x\$\mid$}\;:\;l\;\in\;\mathbb{N},\;\alpha_{\kappa}\;\in\;\mathbb{C}\;and\;E_{\kappa}\;\in\;L\}\;<\;\infty\;and\;$\mid$y_n\$\mid$x_n$\mid$^{-1}\;=\;1\;for\;all\;n\;=\;1,\;2,\;\cdots$. (2) There exists an operator A in AlgL such that Ax = y, A is a unitary operator and every E in L reduces, A, where AlgL is a tridiagonal algebra.

Operator Capacity Assessment Method for the Supervisory Control of Unmanned Military Vehicle (군사로봇의 감시제어에서 운용자 역량 평가 방법에 관한 연구)

  • Choi, Sang-Yeong;Yang, Ji-Hyeon
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.94-106
    • /
    • 2017
  • Unmanned military vehicles (UMVs) will be increasingly applied to the various military operations. These UMVs are most commonly characterized as dealing with "4D" task - dull, dirty, dangerous and difficult with automations. Although most of the UMVs are designed to a high degree of autonomy, the human operator will still intervene in the robots operation, and tele-operate them to achieve his or her mission. Thus, operator capacity, along with robot autonomy and user interface, is one of the important design factors in the research and development of the UMVs. In this paper, we propose the method to assess the operator capacity of the UMVs. The method is comprised of the 6 steps (problem, assumption, goal function identification, operator task analysis, task modeling & simulation, results and assessment), and herein colored Petri-nets are used for the modeling and simulation. Further, an illustrative example is described at the end of this paper.

Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator (모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어)

  • Kim, Junsik;Woo, Heejin;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

PartitionTuner: An operator scheduler for deep-learning compilers supporting multiple heterogeneous processing units

  • Misun Yu;Yongin Kwon;Jemin Lee;Jeman Park;Junmo Park;Taeho Kim
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.318-328
    • /
    • 2023
  • Recently, embedded systems, such as mobile platforms, have multiple processing units that can operate in parallel, such as centralized processing units (CPUs) and neural processing units (NPUs). We can use deep-learning compilers to generate machine code optimized for these embedded systems from a deep neural network (DNN). However, the deep-learning compilers proposed so far generate codes that sequentially execute DNN operators on a single processing unit or parallel codes for graphic processing units (GPUs). In this study, we propose PartitionTuner, an operator scheduler for deep-learning compilers that supports multiple heterogeneous PUs including CPUs and NPUs. PartitionTuner can generate an operator-scheduling plan that uses all available PUs simultaneously to minimize overall DNN inference time. Operator scheduling is based on the analysis of DNN architecture and the performance profiles of individual and group operators measured on heterogeneous processing units. By the experiments for seven DNNs, PartitionTuner generates scheduling plans that perform 5.03% better than a static type-based operator-scheduling technique for SqueezeNet. In addition, PartitionTuner outperforms recent profiling-based operator-scheduling techniques for ResNet50, ResNet18, and SqueezeNet by 7.18%, 5.36%, and 2.73%, respectively.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

Development of Wheel Loader V-Pattern Operator Model for Virtual Evaluation of Working Performance (휠로더 가상 성능평가를 위한 V상차 작업 운전자 모델)

  • Oh, Kwangseok;Kim, Hakgu;Ko, Kyungeun;Kim, Panyoung;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1201-1206
    • /
    • 2014
  • This paper presents the development of an event-based operator model of a wheel loader for virtual V-pattern working. The objective of this study is to analyze the performance and dynamic behavior of the wheel loader for a typical V-pattern. The proposed typical V-pattern working is divided into four stages. The developed operator model is based on eight events, and the operator's inputs are occurred sequentially by event. A 3D dynamic simulation model of the wheel loader is developed and used to analyze the dynamic behavior during working, and the simulation results are compared with the experimental data of V-pattern working. The proposed 3D dynamic simulation model and operator model are constructed using MATLAB/Simulink. The proposed operator model for V-pattern working is expected to enable evaluation of the working performance and dynamic behavior of the wheel loader.

Applicability of Projective Transformation for Constructing Correspondences among Corners in Building Facade Imagery (건물벽면 영상내 코너점의 대응관계 구성을 위한 사영변환행렬의 적용성)

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.709-717
    • /
    • 2014
  • The objective of this study is to analyze the degree of correspondences among corners found in building facade imagery when the projective transformation parameters are applied to. Additionally, an appropriate corner detection operator is determined through experiments. Modeling of the shape of a building has been studied in numerous approaches using various type of data such as aerial imagery, aerial lidar scanner imagery, terrestrial imagery, and terrestrial lidar imagery. This study compared the Harris operator with FAST operator and found that the Harris operator is superior in extracting major corner points. After extracting corners using the Harris operator and assessing the degree of correspondence among corners in difference images, real corresponding corners were found to be located in the closest distance. The experiment of the projective transformation with varying corners shows that more corner control points with a good distribution enhances the accuracy of the correspondences.

Analysis of Cognition Characteristic for Operators' Roles in Mountain Eco Villages - focused on an improvement of empowerment training - (산촌생태마을 운영매니저의 역할에 대한 인식 특성 분석 - 역량강화교육 개선을 중심으로 -)

  • Kim, Seong-Hak;Seo, Jeong-Weon
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2013
  • The importance of human resources empowerment for operation and management is increasing for sustainable effects and improvement in mountain eco village development projects. This study aimed to understand the cognition characteristics of operator who works for mountain eco villages as part of the mountain village development and to suggest improvement methods in empowerment training aspects. The survey contained operator's empowerment and operator systems in mountain eco villages and the results were analyzed for the study. Operators who joined the mountain eco village operator training course by Korea Forest Service were conducted the survey on March 12th~13th in 2012 and March 13th~15th in 2013. 69 and 58 of questionnaires were collected respectively and analyzed for the study. T-test was applied to Intergroup cognition difference and regression analysis was used for influential factors in necessity of operator's role. Collected data was analyzed by statistical package programme SPSS 18.0 version. According to the comparison of empowerment cognition with contingent upon training experience, 'harmony with residents' showed significantly difference at p<0.05 level. In the recognition comparison for prospect of future mountain eco village development, 'various training experiences' was significantly difference at p<0.01 level between positive and negative prospect group. Regression analysis revealed that 'communication with village leader', 'harmony with residents', and 'idea related to the project' have an effect on necessity of operator's empowerment significantly. Based on the results, the study suggests improved directions for operator's empowerment training as a horizontal leader who conduces a mountain village.

A New Connected Operator Using Morphological Reconstruction for Region-Based Coding (영역 기반 부호화를 위한 새로운 수리형태학 기반의 Connected Operator)

  • Kim, Tae-Hyeon;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In this paper, we propose a new connected operator Using morphological grayscale reconstruction for region-based coding First, an effective method of reference-image creation lis proposed, which is based on the Size as well as the contrast. This improves the performance of simplification, because It preserves perceptually important components and removes unnecessary components The conventional connected operators are good for removing small regions, but have a serious drawback for low-contrast regions that are larger than the structuring element. That is, when the conventional connected operators are applied to tills region, the simplification becomes less effective or several meaningful regions are merged to one region to avoid this, the conventional geodesic dilation is modified to propose an adaptive operator to reduce the effect of inappropriate propagation, pixels reconstructed to the original values are excluded m the dilation operation Experimental results have shown that the proposed algorithm achieves better performance In terms of the reconstruction of flat zones. The Picture quality has also been improved by about 7dB, compared to the conventional methods.

  • PDF