DOI QR코드

DOI QR Code

Applicability of Projective Transformation for Constructing Correspondences among Corners in Building Facade Imagery

건물벽면 영상내 코너점의 대응관계 구성을 위한 사영변환행렬의 적용성

  • Seo, Suyoung (Department of Civil Engineering, Kyungpook National University)
  • 서수영 (경북대학교 건축토목공학부 토목공학전공)
  • Received : 2014.08.08
  • Accepted : 2014.12.17
  • Published : 2014.12.31

Abstract

The objective of this study is to analyze the degree of correspondences among corners found in building facade imagery when the projective transformation parameters are applied to. Additionally, an appropriate corner detection operator is determined through experiments. Modeling of the shape of a building has been studied in numerous approaches using various type of data such as aerial imagery, aerial lidar scanner imagery, terrestrial imagery, and terrestrial lidar imagery. This study compared the Harris operator with FAST operator and found that the Harris operator is superior in extracting major corner points. After extracting corners using the Harris operator and assessing the degree of correspondence among corners in difference images, real corresponding corners were found to be located in the closest distance. The experiment of the projective transformation with varying corners shows that more corner control points with a good distribution enhances the accuracy of the correspondences.

본 연구는 사영변환행렬을 적용한 경우 건물벽면 영상 간 코너점의 대응정도를 분석하는 것을 목표로 한다. 부가적으로 코너점을 찾기 위한 적절한 연산자를 실험을 통하여 결정하였다. 건물형상에 대한 모델링은 항공사진, 항공라이다영상, 지상사진, 지상라이다영상 등 다양한 자료를 이용하여 많은 기법들이 연구되어 왔다. 본 연구에서는 영상 간 정합을 위하여 필요한 코너점 검출방법으로 Harris 연산자와 FAST 연산자의 성능을 비교하였다. 비교결과 Harris 연산자가 건물벽면에서 코너점 추출에 우수하다는 결론을 내렸다. Harris 연산자로 코너점 검출 후, 사영변환행렬을 통하여 코너점 들의 대응정도를 비교한 결과, 대부분의 경우 최소거리에 실제 대응점들이 위치해 있음을 알 수 있었다. 사영변환행렬의 성능을 기준점 수와 분포를 고려하여 대응정도에 미치는 영향을 분석한 결과 기준점이 많고 골고루 분포한 경우에 더욱 정확한 대응 관계를 제공하는 것으로 나타났다.

Keywords

References

  1. Baillard, C., C. Schmid, A. Zisserman, and A. Fitzgibbon, 1999. Automatic line matching and 3D reconstruction of buildings from multiple views, International Archives of Photogrammetry and Remote Sensing, 53(2): 130-141.
  2. Boulaassal, H., T. Landes, and P. Grussenmeyer, 2009. Automatic extraction of planar clusters and their contours on building facades recorded by terrestrial laser scanner, International Journal of Architectural Computing, 7(1): 1-20. https://doi.org/10.1260/147807709788549411
  3. Collins, R., A. Hanson, E. Riseman, and H. Schultz, 1995. Use of DTMs/DSMs and orthoimages to support building extraction, Automatic Extraction of Man-Made Objects from Aerial and Space Images, Birkaeuser, Basel: 169-178.
  4. Dick, A.R., P.H.S. Torr, and R. Cipolla, 2004. Modelling and interpretation of architecture from several images, International Journal of Computer Vision, 60(2): 111-134. https://doi.org/10.1023/B:VISI.0000029665.07652.61
  5. Dorninger, P. and N. Pfeifer, 2008. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds, Sensors, 8(11): 7323-7343. https://doi.org/10.3390/s8117323
  6. EOS, 2009. PhotoModeler Scanner, Eos Systems Inc., Vancouver, Canada
  7. Fischer, A., T.H. Kolbe, H. Lang, A.B. Cremers, W. Foerstner, L. Pluemer, and V. Steinhage, 1998. Extracting buildings from aerial images using hierarchical aggregation in 2D and 3D, Computer Vision and Image Understanding, 72(2): 185-203. https://doi.org/10.1006/cviu.1998.0721
  8. Foerstner, W. and E. Guelch, 1987. A fast operator for detection and precise location of distinct points, corners and centres of circular features, Proc. of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland. 437: 281-305.
  9. Harris, C. and M. Stephens, 1988. A combined corner and edge detector, Proc. of the Fourth Alvey Vision Conference, Manchester, UK. 302: 147-151.
  10. Hartley, R. and A. Zisserman, 2003. Multiple View Geometry in Computer Vision, Cambridge, New York, USA.
  11. Henricsson, O., 1998. The role of color attributes and similarity grouping in 3-D building reconstruction, Computer Vision and Image Understanding, 72(2): 163-184. https://doi.org/10.1006/cviu.1998.0718
  12. Jazayeri, I. and C.S. Fraser, 2010. Interest operators for feature-based matching in close range photogrammetry, Photogrammetric Record, 25(129): 24-41. https://doi.org/10.1111/j.1477-9730.2009.00559.x
  13. Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  14. Kim, K. and J. Shan, 2011. Building roof modeling from airborne laser scanning data based on level set approach, ISPRS Journal of Photogrammetry and Remote Sensing, 66(4): 484-497. https://doi.org/10.1016/j.isprsjprs.2011.02.007
  15. Landes, T., H. Boulaassal, and P. Grussenmeyer, 2012. Quality assessment of geometric facade models reconstructed from TLS data, Photogrammetric Record, 27(138): 137-154. https://doi.org/10.1111/j.1477-9730.2012.00674.x
  16. Moravec, H., 1980. Obstacle avoidance and navigation in the real world by a seeing robot rover, Technical Report CMU-RI-TR-3 Carnegi-Mellon University, Robotics Institute.
  17. Rosten, E. and T. Drummond, 2006. Machine learning for high-speed corner detection, Proc. of the European Conference on Computer Vision, Graz, Austria. 639: 430-443.
  18. Roux, M. and D.M. Mckeown, 1994. Feature matching for building extraction from multiple views, Proc. of the 1994 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 46-53.
  19. Sampath, A. and J. Shan, 2007. Building boundary tracing and regularization from airborne lidar point clouds, Photogrammetric Engineering and Remote Sensing, 73(7): 805-812. https://doi.org/10.14358/PERS.73.7.805
  20. Seo, S. and B.-G. Kim, 2009. Extraction of geometric components of buildings with gradient-driven properties, Korean Journal of Geomatics, 27(1): 723-733.
  21. Seo, S., J. Lee, and Y. Kim, 2014. Extraction of boundaries of rooftop fenced buildings from airborne laser scanning data using rectangle models, IEEE Geoscience and Remote Sensing Letters, 11(2): 404-407. https://doi.org/10.1109/LGRS.2013.2263575
  22. Willuhn, W. and F. Ade, 1996. A rule-based system for house reconstruction from aerial images, Proc. of International Conference on Pattern Recognition, IEEE Computer Society Press, 885-889.
  23. Yang, M.-D., C.-F. Chao, K.-S. Huang, L.-Y. Lu, and Y.-P. Chen, 2013. Image-based 3D scene reconstruction and exploration in augmented reality, Automation in Construction, 33: 48-60. https://doi.org/10.1016/j.autcon.2012.09.017
  24. Zhu, Q., Y. Zhang, B. Wu, and Y. Zhang, 2010. Multiple close-range image matching based on a self-adaptive triangle constraint, Photogrammetric Record, 25(132): 437-453. https://doi.org/10.1111/j.1477-9730.2010.00603.x