• Title/Summary/Keyword: operational condition

Search Result 675, Processing Time 0.024 seconds

A Study for the Optimal Operating Conditions of the Gas Turbine Based Combined Cycle Cogeneration Power Plant (가스터빈 복합 열병합 발전의 최적 운전조건에 관한 연구)

  • Cho, Young-Bin;Sohn, Jeong-Lak;Ro, Sung-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1582-1590
    • /
    • 2004
  • The purpose of this study is to show the existence of optimal operation conditions for minimum fuel consumption of the gas turbine based combined cycle cogeneration power plant. Optimal operational condition means the optimal distribution of the power generated by each gas turbine and the heat generated by each HRSG. Total fuel consumption is calculated by the sum of the fuels for gas turbines and supplementary boiler. Fuel consumption is calculated by numerical methods of energy equations which contain the power generated from gas and steam turbines, the heat generated by HRSG and the heat extracted from high pressure steam turbine.

Class-E Power Amplifier with Minimal Standby Power for Wireless Power Transfer System

  • Kim, Bong-Chul;Lee, Byoung-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.250-255
    • /
    • 2018
  • This paper presents a method for minimizing standby power consumption in wireless power transfer (WPT) system via magnetic resonance coupling (MRC) that operates at 6.78 MHz. The proposed circuit controls the required capacitance according to operational condition in order to reduce standby power consumption. Based on an impedance characteristic of the class-E power amplifier, operational principles of the proposed circuit are analyzed. Moreover, to verify the effectiveness of the proposed class-E power amplifier, an 8 W prototype for WPT system is implemented. The measured input power of the proposed class-E power amplifier at standby condition is reduced from 5.81 W to 3.53 W.

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

Rail Temperature under the Domestic Climate Condition (국내 기후환경에서의 레일온도)

  • Lee, Woo-Chul;Lee, Chin-Ok;Choi, Jin-Yu;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.546-547
    • /
    • 2009
  • To ensure stability of continuous welded rail in extremely hot weather is important to the railway industry's goal of operational safety and maintenance. Rail temperature has direct influence on track buckling. According to climate condition, distribution of rail temperature is different. In this study, the fluctuation of rail temperature were investigated under the domestic climate condition (air temperature, humidity, insolation, etc)

  • PDF

A Suggestion for Definition of El Niño/La Niña (엘니뇨/라니냐 정의에 대한 제언)

  • Son, Hye-Young;Kug, Jong-Seong;Yeh, Sang-Wook;Kim, Hyun-Kyung;Park, E-Hyung
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • KMA is operationally monitoring El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events, which have tremendous impacts on global climate. Many scientific studies have used to define onset of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events based on the moving average and persistency of SST indices, and KMA has adopted such definition. Though the definition has been widely accepted, in the operational aspect there is a critical problem to use moving average and condition for the persistence. Because the future values for the SST indices cannot be used in the operational monitoring, the onset timing in El Ni$\tilde{n}$o and La Ni$\tilde{n}$a can be significantly delayed. We suggest here an appropriate definition of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a events in the operational aspect. Instead of using the moving average and the condition for the persistence, the onset is defined based on NINO3.4 SST during last 3 months. In order to compare the new definition with the current KMA definition, we applied them to recent 60-years SST data. It is clear that the new definition can declare the onset timing of El Ni$\tilde{n}$o and La Ni$\tilde{n}$a several months earlier than that of the KMA definition. It suggest that the new definition is more appropriate to the operational monitoring on El Ni$\tilde{n}$o and La Ni$\tilde{n}$a.

Effect of operational pH on anaerobic hydrogen fermentation of food waste (음식폐기물의 혐기성 수소 발효시 운전 pH의 영향)

  • Lee, Chae-Young;Lee, Se-Wook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • The pH is one of the most important factors affecting metabolism pathway and activity of hydrogen producing bacteria. The effect of operational pH on anaerobic hydrogen fermentation of food waste was evaluated at mesophilic condition. In this batch experiment, the initial pH was 8.0 and the operational pH was controlled at 4.7~7.0 by the addition of 5N KOH solutions. At the operational pH of 4.7, the lag phase and the maximum hydrogen production were 47.9h and 534.4 mL, respectively. The lag phase and the maximum hydrogen production were decreased as the operational pH increased. At the operational pH of 7.0, the lag phase and the maximum hydrogen production were 4.2 h and 213.8 mL, respectively.

Optimal Control of Nonlinear Systems Using The New Integral Operational Matrix of Block Pulse Functions (새로운 블럭펄스 적분연산행렬을 이용한 비선형계 최적제어)

  • Cho Young-ho;Shim Jae-sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.4
    • /
    • pp.198-204
    • /
    • 2003
  • In this paper, we presented a new algebraic iterative algorithm for the optimal control of the nonlinear systems. The algorithm is based on two steps. The first step transforms nonlinear optimal control problem into a sequence of linear optimal control problem using the quasilinearization method. In the second step, TPBCP(two point boundary condition problem) is solved by algebraic equations instead of differential equations using the new integral operational matrix of BPF(block pulse functions). The proposed algorithm is simple and efficient in computation for the optimal control of nonlinear systems and is less error value than that by the conventional matrix. In computer simulation, the algorithm was verified through the optimal control design of synchronous machine connected to an infinite bus.

Operational Mode Analysis of Cooler Driver Electronics in Satellite and System Safety Margin

  • Kim, Kyudong
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.79-84
    • /
    • 2020
  • Cooler driver electronics (CDE) for maintaining low temperature of the satellite payload IR sensor consists of a compressor that has a pulsation current load condition when it is operated. This pulsation current produces large voltage fluctuation, which affects both load and regulated bus stability. Thus, CDE power conditioning system consists of a primary bus, infrared power distribution unit for battery charging and protection, reverse current protection diode, and battery, which is used as a buffer. In this study, the operational mode analysis is performed by each part with equivalent impedance modeling verified through system level simulation. From this mode analysis, the safety margin for state of charge and open circuit voltage of the battery is determined for satisfying the minimum operational voltage of the CDE load.

Corrosion Control in Water Distribution System using Lime and Carbon Dioxide(I) - Determination of Optimum Operational Conditions in Lime Adding Process (소석회와 CO2를 이용한 상수관로의 부식제어(I) - 소석회 주입공정의 최적 운전인자 도출)

  • Sohn, Byung-Young;Byun, Kyu-Sik;Kim, Young-Il;Lee, Doo-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2008
  • The pH & alkalinity adjustment method by lime and carbon dioxide($CO_2$) for corrosion control in water distribution system was investigated to determine the optimum operational condition in lime adding process in water treatment plant(WTP). The mixing time at dissolution tank and sedimentation time at saturator for maintaining optimal turbidity condition of lime supernatant were 60~75 minutes and 75~95 minutes, respectively. There was no difference according to $CO_2$ adding methods such as $CO_2$ saturated water or $CO_2$ gas. But, $CO_2$ saturated water could be convenience at WTP in terms of pH control and quantitative dosing. To minimize generation of calcium carbonate products, the short time interval between adding of lime and $CO_2$ is most important. The lime should be added below 32 mg/l for preventing pH rising and generation of calcium carbonate products at the heating condition.