• Title/Summary/Keyword: operation efficiency

Search Result 5,525, Processing Time 0.031 seconds

An Efficient Management of Network Traffic using Framework-based Performance Management Tool (프레임워크 기반 성능관리 도구를 이용한 효율적인 네트워크 트래픽 관리)

  • Choi Seong-Man;Tae Gyu-Yeol;Yoo Cheol-Jung;Chang Ok-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.224-234
    • /
    • 2005
  • As the network-related technology develops the number of both Internet users and the usage are explosively increasing. The networking traffic is increasing in the campus as the networking system inside universities, following the trend, adds more nodes and various networking services. Nonetheless, the quality of services for users has been degraded. Accordingly, core problems, which can cause troubles for network management, design and expansion of the network, and the cost policy, has appeared. To effectively cope with the problems with analyses a great number of technicians, tools, and budget are needed. However, it is not possible for mid and small-sized colleges to spend such a high expenditure for professional consulting. To reduce the cost and investment creating the optimized environment, the analyses on the replacement of the tools, changing the network structure, and performance analysis about capacity planning of networking is necessary. For this reason, in this paper, framework-based performance management tools are used for all steps that are related to the subject of the analysis for the network management. As the major research method, the current data in detailed categories are collected, processed, and analyzed to provide the solution for the problems. As a result we could manage the network, server, and application more systematically and react efficiently to errors and degrading of performance that affect the networking tasks. Also, with the scientific and organized analyses the overall efficiency is upgraded by optimizing the cost for managing the operation of entire system.

A Study on Development of Remote Crane Wire Rope Flaws Detection Systems (원격 크레인 와이어 로프 결함 탐지 시스템 개발에 관한 연구)

  • Min, Jeong-Tak;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.1
    • /
    • pp.97-102
    • /
    • 2003
  • Wire ropes are used in a myriad of various industrial applications such as elevator, mine hoist, construction machinery, lift, and suspension bridge. Especially, the wire rope of crane is important component to container transfer. If it happens wire rope failures during the operation, it may lead to safety accident, economic loss by productivity decline and so on. To solve this problem, we developed remote wire rope fault detecting system, and this system is consisted of 3 parts that portable fault detecting part, signal processing part and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. So, we applied to discrete wavelet transform to extract a signal from noisy data. It is verified that the detecting system by de-noising has good efficiency for inspecting faults of wire ropes in service. As a result, by developing this system, container terminal could reduce expense because of extension fo wire ropes exchange period and could competitive power. Also, this system is possible to apply in several field such as elevator, lift and so on.

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM (Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어)

  • Jeon, Kyoung Yein;Kwak, Ha Yeon;Kyung, Ji Hyun;Yoo, Ahrim;Lee, Tae Won;Lee, Gi Pung;Moon, Kil Ho;Yang, Dae Ryook
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.423-431
    • /
    • 2011
  • Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model (IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석)

  • Gwak, You Ra;Kim, Ye Bin;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.631-640
    • /
    • 2018
  • The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy-CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy-CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature ($800^{\circ}C{\sim}900^{\circ}C$), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of $SO_x$, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.

Analysis on the Water Footprint of Crystalline Silicon PV System (결정질 실리콘 태양광시스템의 물 발자국 산정에 대한 연구)

  • Na, Won-Cheol;Kim, Younghwan;Kim, Kyung Nam;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • There has been increasing concerns for the problems of water security in countries, caused by the frequent occurrence of localized drought due to the climate change and uncertainty of water balance. The importance of fresh water is emphasized as considerable amount of usable fresh water is utilized for power generation sector producing electricity. PV power system, the source of renewable energy, consumes water for the every steps of life cycle: manufacturing, installation, and operation. However, it uses relatively less water than the traditional energy sources such as thermal power and nuclear power sources. In this study, to find out the use of water for the entire process of PV power system from extracting raw materials to operating the system, the footprint of water in the whole process is measured to be analyzed. Measuring the result, the PV water footprint of value chain was $0.989m^3/MWh$ and the water footprint appeared higher specially in poly-Si and solar cell process. The following two reasons explain it: poly-Si process is energy-intensive process and it consumes lots of cooling water. In solar cell process, deionized water is used considerably for washing a high-efficiency crystalline silicon. It is identified that PV system is the source using less water than traditional ones, which has a critical value in saving water. In discussing the future energy policy, it is vital to introduce the concept of water footprint as a supplementary value of renewable energy.

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

A TXOP Sharing Scheme for QoS Strategy of IEEE 802.11ac DL MU-MIMO MAC (IEEE 802.11ac DL MU-MIMO MAC의 QoS 정책을 고려한 TXOP 공유 방안)

  • Lee, Ji-Young;Seok, Seung-Joon
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.317-327
    • /
    • 2014
  • To improve the efficiency of wireless channel, IEEE 802.11ac uses the DL MU-MIMO MAC scheme through which an AP transmits multiple frames to different mobile nodes simultaneously. IEEE 802.11ac DL MU-MIMO MAC needs a new step, called as TXOP sharing, between legacy IEEE 802.11n DL SU-MIMO's two operations, the obtaining an EDCA TXOP and the transmitting multiple frames for EDCA TXOP. In the TXOP sharing operation, both wireless channel destinations and frames transmitted for its TXOP period should are determined. So this paper deals with the TXOP sharing for improving IEEE 802.11ac MAC performance. However, the EDCA priority based method mentioned by IEEE 802.11ac standard document not fair among the buffers and the frames of buffers, and occurs in high_loss rate and high_delay about specific buffers. In this paper, we propose a new scheme of the TXOP sharing with sequencing p-AC, s-AC in similar properties, and all S-AC. This method provides a differentiated service without damage of EDCA characteristics.

The Influence of Traffic Information based on VMS(Variable Message Sign) on the Selection of Drivers' Route (VMS(Variable Message Sign)를 통한 교통정보 제공이 운전자의 운행경로 전환에 미치는 영향 분석)

  • Jung, Hun Young;Son, Su Ran;Lee, Jeong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.193-201
    • /
    • 2011
  • The provision of traffic information plays an important role in increasing social benefit not only by saving travel time for individuals but also by improving the efficiency of road operation. VMS(Variable Message Sign) helps on-wheel drivers easily understand the road situation, and also provides real-time traffic information to people on the streets. However, it has not been sufficiently studied on how traffic information based on VMS influences on the drivers' selection of route. This study investigated how drivers use VMS traffic information and how they are satisfied with it. Then, the model of drivers' route selection was specified with the types of traffic information and the expected travel time to examine the influence on the selection of drivers' route. The model was estimated and analyzed in three types according to the condition of detour roads, and the rate of route change and the degree of sensitivity was calculated from the estimation. The results of analysis are as follows. the $1^{st}$ type model showed the 10% of route change for the travel time saving of 5minutes, and the 81.6% of route change for the travel time saving of 20minutes. The $2^{nd}$ type led to the range of route change from 14.2% to 92.7% over the 5 through 20 minutes of travel time saving. The $3^{rd}$ model resulted in the 99.1% of route change. The sensitivity of route change showed the highest for the travel time saving of 11 minutes with the $1^{st}$ type model, 9 minutes with the $2^{nd}$ type model, and 5 minutes with the $3^{rd}$ type model respectively.

Research Trend of Soft Magnetic Composite Materials with High Energy Efficiency (고에너지효율 연자성 복합 분말 소재의 연구개발 동향)

  • Kim, Hwi-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The use of soft magnetic materials have been increasing in the various industrial fields according to the increasing demand for high performance, automatic, miniaturing equipments in the recent our life. In this study, we investigated the effect of factors on the core loss and magnetic properties of electrical steel and soft magnetic composites. Furthermore, we reviewed the major efforts to reduce the core loss and improve the soft magnetic properties in the two main soft magnetic materials. Domain purification which results from reduced density of defects in cleaner electrical steels is combined with large grains to reduce hysteresis loss. The reduced thickness and the high electrical conductivity reduce the eddy current component of loss. Furthermore, the coating applied to the surface of electrical steel and texture control lead to improve high permeability and low core loss. There is an increasing interest in soft magnetic composite materials because of the demand for miniaturization of cores for power electronic applications. The SMC materials have a broad range of potential applications due to the possibility of true 3-D electromagnetic design and higher frequency operation. Grain size, sintering temperature, and the degree of porosity need to be carefully controlled in order to optimize structure-sensitive properties such as maximum permeability and low coercive force. The insulating coating on the powder particles in SMCs eliminates particle-to-particle eddy current paths hence minimizing eddy current losses, but it reduces the permeability and to a small extent the saturation magnetization. The combination of new chemical composition with optimum powder manufacturing processes will be able to result in improving the magnetic properties in soft magnetic composite materials, too.

Prediction of Performance Characteristics with Various Location of Waste Heat Recovery Heat Pump in a Gwang-gyo Cogeneration Plant (냉각수 활용 히트펌프 설치 위치에 따른 광교 열병합발전소의 성능 특성 예측)

  • Park, Heun-Dong;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-Sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.28-37
    • /
    • 2014
  • Recently, it is considered that environment and energy are critical issues all over the world. In power generation sector in Korea, almost power stations are constructed and operated as cogeneration plants in conformity with this trend. KDHC(Korea District Heating Corporation) goes one step further adopting renewable energy technology like heat pump using wasted heat for energy-saving and environment improvement. This study investigates the performance characteristics by the location of waste heat recovery heat pumps of 5 Gcal/h capacity in 150 MW-class Gwang-gyo cogeneration plant using commercial software 'THERMOFLEX'. Prior to analysis, the simulations are performed with actual operation data, and then the validation of simulations is verified by checking the error within 2%. After verification, the simulations are carried out with 3 locations and the effect on electrical power output and heat output is analyzed. As a result, overall efficiency of cogeneration plant is the highest in the case of heat pump located before DH(District Heating) Heater because of the largest increase of heat output despite of decrease of electrical power output.

  • PDF