DOI QR코드

DOI QR Code

Simulation and Control of the Molten Carbonate System using Aspen $Dynamics^{TM}$ and ACM

Aspen $Dynamics^{TM}$와 ACM을 이용한 용융탄산염 연료전지 시스템의 모사 및 제어

  • Jeon, Kyoung Yein (Department of Chemical Engineering, Korea University) ;
  • Kwak, Ha Yeon (Department of Chemical Engineering, Korea University) ;
  • Kyung, Ji Hyun (Department of Chemical Engineering, Korea University) ;
  • Yoo, Ahrim (Fuel Cell System Development, Technology Institute, Doosan Heavy Industries Co.) ;
  • Lee, Tae Won (Fuel Cell System Development, Technology Institute, Doosan Heavy Industries Co.) ;
  • Lee, Gi Pung (Fuel Cell System Development, Technology Institute, Doosan Heavy Industries Co.) ;
  • Moon, Kil Ho (Fuel Cell System Development, Technology Institute, Doosan Heavy Industries Co.) ;
  • Yang, Dae Ryook (Department of Chemical Engineering, Korea University)
  • 전경연 (고려대학교 화공생명공학과) ;
  • 곽하연 (고려대학교 화공생명공학과) ;
  • 경지현 (고려대학교 화공생명공학과) ;
  • 이태원 (두산중공업 기술연구원 연료전지개발센터) ;
  • 문길호 (두산중공업 기술연구원 연료전지개발센터) ;
  • 이기풍 (두산중공업 기술연구원 연료전지개발센터) ;
  • 류아림 (두산중공업 기술연구원 연료전지개발센터) ;
  • 양대륙 (고려대학교 화공생명공학과)
  • Published : 2011.08.01

Abstract

Recentincreasing awareness of the environmental damage caused by the $CO_2$ emission of fossil fuelsstimulated the interest in alternative and renewable sources of energy. Fuel cell is a representative example of hydrogen energy utilization. In this study, Molten Carbonate Fuel Cell system is simulated by using $Aspen^{TM}$. Stack model is consisted of equilibrium reaction equations using $ACM^{TM}$(Aspen Custom Modeler). Balance of process of fuel cell system is developed in Aspen $Plus^{TM}$ and simulated at steady-state. Analysis of performance of the system is carried out by using sensitivity analysis tool with main operating parameters such as current density, S/C ratio, and fuel utilization and recycle ratio.In Aspen $Dynamics^{TM}$, dynamics of MCFC system is simulated with PID control loops. From the simulation, we proposed operation range which generated maximum power and efficiency in MCFC power plant.

최근 대체에너지에 대한 관심이 높아짐에 따라 수소에너지를 기반으로 하는 차세대 발전 장치인 연료전지 관련 기술 개발이 활발하게 이루어지고 있다. 특히, 고온 연료전지의 대표적인 형태인 용융 탄산염 연료전지(MCFC: Molten Carbonate Fuel Cell, 이하 MCFC)는 전력사업용으로의 높은 가능성을 인정받아 화석연료를 대체할 발전방식으로 평가 받고 있다. 본 연구에서는 Aspen Custom Modeler($ACM^{TM}$)에서 평형반응식을 이용하여 스택 모델을 구성한 후, Aspen $Plus^{TM}$에서 BOP(Balance of Plant) 시스템과 스택을 연결하여 전체 MCFC 발전 시스템의 정상상태를 모사하였다. 모델의 유효성을 입증하기 위해서 전류밀도, 연료이용률, S/C ratio, 재순환 흐름 비와 같은 주요 조업변수에 따른 셀 전압, 전력, 효율 등 시스템의 성능을 분석하였다. 그리고 Aspen $Dynamics^{TM}$에서 PID제어 방식을 적용하여 제어루프를 구성하였고 부하변화, 설정점 변화, 재순환 흐름비 변화에 따른 각각의 사례연구를 통하여 전체 시스템의 성능변화를 예측하였다. 그 결과 연료이용률과 전류밀도의 변화에 따른 전체 시스템의 최대 발전 효율 및 출력전압을 위한 운전조건을 제안하였다.

Keywords

References

  1. Kirubakaran, A., Jain, S. and Nema, R. K., "A Review on Fuel Cell Technologies and Power Electronic Interface," Renew. Sust. Energ. Rev., 13, 2430-2440(2009). https://doi.org/10.1016/j.rser.2009.04.004
  2. Lim, H. C., "Development of a 100 kw Class Molten Carbonate Fuel Cell System, Journal of Power Sources: Step 1: Operation and Analysis of 25 kW MCFC system," J. Power Sources., 283,16-27(2000).
  3. Lim, H. C. and Koh, J. H., "Operation Characteristics and Analysis of Temperature Gradients in a 5-kW Molten Carbonate Fuel Cell Stack," Trans. the Korean Hydrogen & New Energy Society, 10(2), 107-118(1999).
  4. Wolf, T. L. and Wilemski, G., "Molten Carbonate Fuel Cell Performance Model," J. Electrochem. Soc, 130, 48-55(1983). https://doi.org/10.1149/1.2119681
  5. Sampath, V., Sammells, A. F. and Selman, J. R., "A Performance and Current Distribution Model for Scaled-up Molten Carbonate Fuel Cell," J. Electrochem. Soc, 127, 79-85(1983).
  6. Lukas, M. D., Lee, K. Y. and Ghezel-Ayagh, H., "Development of a Stack Simulation Model for Control Study on Directreforming Molten Carbonate Fuel Cell Power Plant," IEEE Trans. Energy Conversion, 14(4),1651-1657(1999). https://doi.org/10.1109/60.815119
  7. He, W., "The Dynamic Performance of a Molten Carbonate Fuel Cell in Power-generation Systems," J. Power Sources, 52, 179-184(1994). https://doi.org/10.1016/0378-7753(94)01951-7
  8. Yoshiba, F., Abe, T. and Watanabe, T., "Numerical Analysis of Molten Carbonate Fuel Cell Stack Performance: Diagnosis of Internal Conditions Using Cell Voltage Profiles," J. Power Sources, 87, 21-27(2000). https://doi.org/10.1016/S0378-7753(99)00352-3
  9. Lukas, M. D., Lee, K. Y. and Ghezel-Ayagh, H., "An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack," IEEE Trans. Energy Conversion, 16(3), 289-295(2001). https://doi.org/10.1109/60.937210
  10. Lukas, M. D., Lee, K. Y. and Ghezel-Ayagh, H., "Modeling and Cycling Control of Carbonate Fuel Cell Power Plants," Control Engineering Practice, 10(2), 197-206(2002). https://doi.org/10.1016/S0967-0661(01)00110-1
  11. Zhang, W., Croiset, E., Douglas, P. L., Fowler, M. W. and Entchev, E., "Simulation of a Tubular Solid Oxide Fuel Cell Stack Using AspenPlus(TM) Unit Operation Models," Energy Conversion and Management, 46(2), 181-196(2005). https://doi.org/10.1016/j.enconman.2004.03.002
  12. Kuto, D., Yamamoto, O., Iwahara, H. and Yun, C. J., Fuel cell, Gyeomjisa(2007).
  13. Kim, D. H. and Lee, T. J., "Kinetics of Methane Steam Reforming," Korean J. Chem. Eng., 29(4), 396-406(1991).