• Title/Summary/Keyword: operation efficiency

Search Result 5,488, Processing Time 0.031 seconds

A Study on the Economical Efficiency of Mega Container Ship's Operation by Empirical Analysis : Primarily on Container Ship (실증분석을 통한 대형선의 운항 경제성에 관한 연구 -컨테이너선을 중심으로-)

  • Song Yong-Seok;Kim Hyun;Jung Seung-Ho;Nam Ki-Chan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.253-260
    • /
    • 2004
  • In these days, 8000TEU container ship service launches in shipping service at latest based on the economy of scale, unit cast related with ship operation on ocean decreases in proportion to increase of ship scale and mega ship over 10,000TEU is on planning. This paper is analyzed the economic efficiency for reduction qf calling port in the operation cost, port chnrge, feeder cost, etc by an empirical analysis.

  • PDF

Analysis of Design and Operation Performance of Micro Gas Turbine : Part 2 - Variations in Engine's Operation and Performance Caused by Performance Degradation of Compressor and Turbine (마이크로 가스터빈 설계 및 운전 성능 분석 : 제2부 - 압축기와 터빈 성능저하에 의한 엔진 운전 및 성능변화)

  • Kim, Jeong Ho;Kim, Min Jae;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.30-35
    • /
    • 2015
  • This study analyzed the variations in the performance and operation of a 200 kW class micro gas turbine according to performance degradation of compressor and turbine. An in-house code, developed by the present authors and presented in the first part of these series of papers, were used for the analysis. The degradation of compressor and turbine were simulated by modifications in the their performance maps: mass flow rate, pressure ratio and efficiency were decreased from the reference values. Firstly, the variations in the operating conditions (air flow rate, pressure ratio) were predicted for the full load condition. Then, the same analysis were performed for a wide partial load operating range. The change in engine's performance (power output and efficiency) due to the component degradation was predicted. In addition, the change in the compressor surge margin, which is an important indicator for safe engine operation, was evaluated.

A Study of Vehicle Operation Policy in Warehouse (창고에서의 이송장비 운영정책에 관한 연구)

  • Lee, Hue-On;Chae, Jun-Jae;Lee, Moon-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Controlling industrial vehicle operated by human in warehouse was not simple since the information transfer for controlling the vehicle was not easy. However, as the technology for the WMS (Warehouse Management System) has been advanced and the PDA (Personal Digital Assistant) has come into wide use in a workplace, the control of man-operated vehicle became less difficult as do to AGVS (Automated Guided Vehicle System). This study examines the ways to improve the efficiency of warehouse operation through introducing rule of task assignment for the vehicles, particularly forklift. This study, basically, refer to AGV operation policy because a great number of studies for AGV dispatching rule have been done and the mechanism for the controlling vehicles is very similar. The workers in field prefer to simple dispatching rules such as Shortest Retrieval Time First (SRTF), Shortest Travel Time First (STTF), and Longest Waiting Time First (LWTF). However, these rules have potential disadvantage. Thus, several rules made up by combining rules mentioned above are introduced and these new rules use threshold value or evaluation formula. The effectiveness of these new rules are tested by simulation and the results are compared. This study proposes favorable dispatching rules for forklift in warehouse for the efficiency of the vehicle operation and stability of service level.

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

A Study on the Improvement of Subsidy Program for CHP Plant Connected with Capital Region District Heating System (수도권 지역난방연계 열병합발전소의 기반기금 지원과 개선방안)

  • 김창수;이창호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.97-103
    • /
    • 2004
  • CHP system supplies electricity and heating together with high efficiency. Current utility's CHP system uses electric power by itself and sells thermal energy to KDHC(Korea District Heating Corporation). CHP's operation cost except sales revenue of heating was covered by the sale revenue of electricity. Thus Electric generation cost in district Heating CHP system has close relationship with the level of heating price. However, after the restructuring of electricity industry, the operation cost could not be covered by sales revenue of heating and electricity. This loss was compensated by energy subsidy program in the electric power industry infrastructure fund. This paper suggests reasonable evaluation and improvement methods of the loss calculation of CHP system utilizing the infrastructure fund efficiency In terms of the direction of support by the fund, it provides the methods to prevent inefficient operation through setting up the upper limit of subsidy and to improve the loss calculation. Moreover, it suggest fixed rate support by heating supply level and reducing subsidy gradually for an efficient operation of CHP system.

The steam turbine condenser pressure optimization with different heat rate correction curves (각기 다른 열소비율 보정곡선을 갖는 증기터빈의 최적 복수기 운전압력 설정)

  • Cho, Cheon-Hwan;Baek, Nam-Ho;Hur, Jin-Hyek;Lee, Jae-Heon;Moon, Seung-Jae;Yoo, Ho-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.224-227
    • /
    • 2008
  • The present study performs a test of a change in a condenser pressure on two kinds of power plants having different condenser pressure-heat rate correction curve and evaluates the results. According to a result of the test, it is confirmed that a sub-critical drum type steam power plant is optimally operated at the condenser pressure of 38㎜Hga that is designed, even during winters. On the other hand, it can be found that a supercritical once through type steam power plant operated at the condenser pressure that is reduced below a design value, that is, up to 28㎜Hga during winters is advantageous in view of turbine efficiency and is operated without a problem in facility operation such as moisture erosion, turbine vibration, etc. Also, the present study compares and reviews a condenser pressure-heat rate correction curve proposed by a manufacturer and a test value. The present study proposes optimum condenser operation pressure capable of concurrently satisfying the stable operation and efficiency improvement of the power plant facility that is operating, making it possible to support an efficient operation of a power plant.

  • PDF

Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(II) -Performance of Optimal System- (트랙터의 기관속도 및 변속비의 최적제어에 관한 연구(II) -최적운전 제어 시스템의 성능-)

  • Kang, S.B.;Ryu, K.H.;Oh, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.4
    • /
    • pp.291-300
    • /
    • 1994
  • It is desired to operate tractor engines at or near maximum torque much of the time in field operation to increase fuel efficiency. To do this it is necessary to reduce engine speed and to shift gears to higher ratios as frequently as possible. Because of load variations in most drawbar work and inconvenience in gear shift, however, gear-type transmission are usually set in one ratio at unnecessarily high engine speeds, and engine-torque variations are used to compensate for changes in drawbar load. As a result, the most of time the tractor is not operated efficiently in terms of fuel consumption and work output. The objective of this study was to develop an automatic control system which is able to operate a tractor equipped with gear transmission under the optimal condition in terms of fuel efficiency with automatic governor setting and gear shift. An indoor experimental test set which can be used to simulate tractor operation, control engine speed and transmission ratio was developed in the previous paper. In this paper, the performance of the optimal operation system is reported. Through a series of tests, it was found that the automatic control system for optimal operation of tractors with gear transmission had a satisfactory performance.

  • PDF

A Single-phase Buck-boost AC-AC Converter with Three Legs

  • Zhou, Min;Sun, Yao;Su, Mei;Li, Xing;Liu, Fulin;Liu, Yonglu
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.838-848
    • /
    • 2018
  • This paper proposes a single-phase buck-boost AC-AC converter. It consists of three legs with six switching units (each unit is composed of an active switch and a diode) and its input and output ports share a common ground. It can provide buck-boost voltage operation and immune from shoot-through problem. Since only two switching units are involved in the current paths, the conduction losses are low, which improves the system efficiency. The operation principle of the proposed circuit is firstly presented, and then, various operation conditions are introduced to achieve different output voltages with step-changed frequencies. Additionally, the parameters design and comparative analysis of the power losses are also given. Finally, experimental results verify the correctness of the proposed converter.

Operation Performance of a Polymer Electrolyte Fuel Cell Cogeneration System for Residential Application (가정용 고분자연료전지 시스템의 운전 방법에 따른 성능 비교)

  • Lee, W.Y.;Jeong, K.S.;Yu, S.P.;Um, S.K.;Kim, C.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.4
    • /
    • pp.364-371
    • /
    • 2005
  • Fuel cell systems(FCS) have a financial and environmental advantage by providing electricity at a high efficiency and useful heat. For use in a residence, a polymer electrolyte fuel cell system(PEFCS) with a battery pack and a hot water storage tank has been modelled and simulated. The system is operated without connection to grid line. Its electric conversion efficiency and heat recovery performance are highly dependent on operation strategies and also on the seasonal thermal and electric load pattern. The output of the fuel cell is controlled stepwise as a function of the state of the battery and/or the storage water tank. In this study various operation strategies for cogeneration fuel cell systems are investigated. Average fuel saving rates at different seasons are calculated to find proper load management strategy. The scheme can be used to determine the optimal operating strategies of PEFCS for residential and building applications.

A Study on the Transformer Spare Capacity in the Existing Apartments for the Future Growth of Electric Vehicles (전기자동차 보급에 따른 기존 아파트의 변압기용량 한계시점에 대한 연구)

  • Choi, Jihun;Kim, Sung-Yul;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1949-1957
    • /
    • 2016
  • Rapid Expansion of EVs(Electric Vehicles) is inevitable trends, to comply with eco-friendly energy paradigm according to Paris Agreement and to solve the environment problems such as global warming. In this paper, we analyze the limit point of transformer acceptable capacity as the increase of power demand considering EVs supply in the near future. Through the analysis of transformer utilization, we suggest methods to analyze the spare capacity of transformer for the case of optimal efficiency operation and emergency operation respectively. We have the results of 18.4~29% spare capacity for the charging infrastructure to the rated capacity of transformer by analyzing the existing sample apartments. It is analyzed that the acceptable number of EVs is 0.09~0.14 for optimal efficiency operation and 0.06~0.13 for emergency operation. Therefore, it is analyzed the power demand of EV will exceed the existing transformer spare capacity in 7~8 years as the annual growth rate of EVs is prospected 112.5% considering current annual growth rate of EVs and the government EV supply policy.