• Title/Summary/Keyword: open crack

Search Result 173, Processing Time 0.031 seconds

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.

Pavement Crack Detection and Segmentation Based on Deep Neural Network

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.9
    • /
    • pp.99-112
    • /
    • 2019
  • Cracks on pavement surfaces are critical signs and symptoms of the degradation of pavement structures. Image-based pavement crack detection is a challenging problem due to the intensity inhomogeneity, topology complexity, low contrast, and noisy texture background. In this paper, we address the problem of pavement crack detection and segmentation at pixel-level based on a Deep Neural Network (DNN) using gray-scale images. We propose a novel DNN architecture which contains a modified U-net network and a high-level features network. An important contribution of this work is the combination of these networks afforded through the fusion layer. To the best of our knowledge, this is the first paper introducing this combination for pavement crack segmentation and detection problem. The system performance of crack detection and segmentation is enhanced dramatically by using our novel architecture. We thoroughly implement and evaluate our proposed system on two open data sets: the Crack Forest Dataset (CFD) and the AigleRN dataset. Experimental results demonstrate that our system outperforms eight state-of-the-art methods on the same data sets.

Evaluation of Underclad Crack Susceptibility of the SA508 Class 3 Steel for Pressure Vessels -Optimization of Heat Input- (압력용기용 SA508 class3강에 대한 underclad 균열의 감수성 평가 - 입열량의 최적화)

  • 김석원;양성호;김준구;이영호
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.139-149
    • /
    • 1995
  • Many pressure vessels for the power plants are fabricated from low alloy ferritic steels. The inner sides of the pressure vessels are commonly weld_cladded with austenitic stainless steels to minimize problems of corrosive attack. The submerged-arc welding(SAW) process is now used in preference to other processes because of the possibilities open to automation to reduce the overaII welding times. The most reliable way to avoid underclad cracks(UCC) which are often detected at the overlap of the clad beads is to use nonsusceptible steels such as SA508 class 3. At present domestically developed forging steel of SA508 cl.S is now being cladded with single layer by using 90mm wide strip, which transfers higher heat input into the base metal compared to the conventional two layers strip cladding which has been in wide use with 30-60 mm wide strip. But the current indices for the influence of heat input on crack susceptibility are not accurate enough to express the subtle difference in crack susceptibility of the steel. Therefore, the purpose of this present study is: l) To determine UCC susceptibility on domestic forging steel, SA508 cl.S cladded with single layer by using submerged arc 90mm strip and, 2) To optimize heat input range by which the crack susceptibility could be eliminated.

  • PDF

미분변환법에 의한 탄성 지반상의 열림 균열을 가진 Euler-Bernoulli보의 진동 해석

  • 황기섭;윤종학;유영찬;신영재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.690-695
    • /
    • 2003
  • The main purpose of this paper is to apply differential transformation method to vibration analysis of Euler-Bernoulli beam with open cracks on elastic foundation. The governing equation of motion of beam with open cracks on elastic foundation is derived. The concept of differential transformation is briefly introduced. The cracks are modeled by massless substitute spring. The effects of the crack location, size and the foundation constants, on the natural frequencies of the beam, are investigated.

  • PDF

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.

Evaluation of J-R Curve and Tmat of SA 508C-3 Steel at Elevated Temperature (SA 508C-3강의 고온에서 J-R Curve 및 Tmat의 평가)

  • Lim, Man-Bae;Cha, Gee-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.60-67
    • /
    • 1998
  • In this study, the J-Resistance Curve and material tearing modulus of SA508-C3 steel, which is one of the used nuclear pressure vessel steel, are measured ar room temperature, $200^{circ}C$ and $300^{circ}C$ according to load ratio analysis and ASTM E813, ASTM E1152, respectively. It is observed that J-R curve and Tmat value decrease as the temperature level increase. Applicability of $T_j$ proposed by Paris et al as instability parameter for ductile material is investigated. It is concluded that results are the $T_j$ parameter may be used as a crack instability parameter.

  • PDF

Stability and Dynamic Behavior of Cracked Pipe Conveying Fluid (크랙을 가진 유체유동 파이프의 안정성 및 동특성 해석)

  • Youn Han-Ik;Son In-Soo;Ahn Sung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.703-708
    • /
    • 2006
  • In this paper a dynamic behavior(natural frequency) of a cracked simply supported pipe conveying fluid is presented. In addition, an analysis of the buckling instability of a cracked pipe conveying fluid subjected to a follower compressive load is presented. Based on the Euler-Bernouli beam theory, the equation of motion can be constructed by using the Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. TI1e crack is assumed to be in the first mode of fracture and to be always opened during the vibrations.

  • PDF

Effects of Slenderness Ratio on Dynamic Behavior of Cracked Beams Subjected to Subtangential Follower Force (경사종동력과 크랙을 가진 보의 진동특성에 미치는 세장비의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper the purpose is to investigate the stability and variation of natural frequency of a cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the stability of a cantilever beam as the crack effect and slenderness ratio is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. By using the results of this paper, we can obtain the judgment base that the choice of beam models for the effect of slenderness ratio and crack.

Effects of Crack on Stability of Timoshenko Beams Subjected to Subtangential Follower Force (경사 종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1327-1334
    • /
    • 2008
  • In this paper, the purpose is to investigate the stability of cracked Timoshenko cantilever beams subjected to subtangential follower force. In addition, an analysis of the instability(critical follower force of flutter and divergence) of a cracked beam as slenderness ratio and subtangential coefficient is investigated. The governing differential equations of a Timoshenko beam subjected to an end tangential follower force is derived via Hamilton's principle. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The results of this study will contribute to the safety test and stability estimation of structures of a cracked beam subjected to subtangential follower force.