• 제목/요약/키워드: open cathode

검색결과 81건 처리시간 0.022초

효소연료전지의 Anode 제조조건이 OCV에 미치는 영향 (Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells)

  • 김영숙;이세훈;추천호;나일채;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.6-10
    • /
    • 2015
  • 효소 전극 anode와 PEMFC용 전극 cathode를 이용하여 효소연료전지를 구동하였다. 효소 anode는 그래파이트 분말과 효소로서 글루코스 산화제, 전자매개체로서 페로센을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. anode 제조조건을 변화시키며 OCV를 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 9.0 MPa였다. 효소 anode에서 그래파이트가 60%일 때 최고의 OCV를 나타냈다. anode 기질 용액의 최적 글루코스 농도는 1.7 mol/l이었으며, anode의 효소 활성은 7일 동안 안정적으로 유지되었다.

원통형 자연대류 방식 PEMFC 개발 (The Development of Cylinder Shaped Air-breathing PEMFC)

  • 이강인;이세원;박민수;주종남
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.125-132
    • /
    • 2009
  • Cylinder shaped air-breathing PEMFC has been developed to have small volume, low contact resistance and better air accessibility to the open cathode. This cylinder shaped design consists of an anode cylinder with helical flow channel and a cathode current collector with slits. The pressure distribution measurement according to the shapes was performed. The test result indicated that cylinder shaped fuel cell has better pressure distribution compared with the planar shaped fuel cell. The better pressure distribution was connected to the higher performance. The maximum power density of cylinder shaped fuel cell was about 20% higher than the planar shaped fuel cell. The maximum power density of the developed cylinder shaped air-breathing PEMFC with dry hydrogen was $220\;mW/cm^2$ and with humidified hydrogen was $293\;mW/cm^2$.

용융 탄산염 연료전지의 분리판 내 연료 분배 해석 (A study for gas distribution in separators of molten carbonate fuel cell)

  • 박준호;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

유기 광기전력 소자의 엑시톤 억제층 특성 (Properties of the Exciton Blocking Layer in Organic Photovoltaic cell)

  • 오현석;이호식;박용필;이원재;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 춘계학술대회 논문집
    • /
    • pp.20-21
    • /
    • 2008
  • Photovoltaic effects in organic solar cell were studied in a cell configuration of ITO/PEDOT:PSS/CuPd(20nm)/$C_{60}$(40nm)/BCP/Al(150nm) at room temperature. Here, the BCP layer works as an exciton blocking layer. The exciton blocking layer must transport electrons from the acceptor layer to the metal cathode with minimal increase in the total cell series resistance and should absorb damage during cathode deposition. Therefore, a proper thickness of the exciton blocking layer is required for an optimized photovoltaic cell. Several thicknesses of BCP were made between $C_{60}$ and Al. And we obtained characteristic parameters such as short-circuit current, open-circuit voltage, and power conversion efficiency of the device under the illumination of AM 1.5.

  • PDF

연료극 지지체식 원통형 고체산화물 연료전지의 제조 및 특성 (Fabrication and Characteristics of Anode-supported Tubular Solid Oxide Fuel Cell)

  • 송근숙;송락현;임영언
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.691-695
    • /
    • 2002
  • A low temperature anode-supported tubular solid oxide fuel cell was developed. The anode-supported tube was fabricated using extrusion process. Then the electrolyte layer and the cathode layer were coated onto the anode tube by slurry dipping process, subsequently. The anode tube and electrolyte were co-fired at $140^{\circ}C$, and the cathode was sintered at $1200^{\circ}C$. The thickness and gas permeability of the electrolyte depended on the number of coating and the slurry concentration. Anode-supported tube was satisfied with SOFC requirements, related to electrical conductivity, pore structure, and gas diffusion limitations. At operating temperature of $800^{\circ}C$, open circuit voltage of the cell with gastight and dense electrolyte layer was 1.1 V and the cell showed a good performance of 450 mW/$\textrm{cm}^2$.

박막 고체전지 개발에 관한 연구 (A study on the development of thin solid state batteries)

  • 권혁상;이홍로
    • 한국표면공학회지
    • /
    • 제25권5호
    • /
    • pp.215-221
    • /
    • 1992
  • This research is aimed at developing(110) preferred TiS2 cathode films and glass typed solid electro-lytes which have high ionic migrations and low electron conductivities for thin secondary solid batteries. To obtain preferred oriented TiS2 thin films on a substrate by CVD method using TiCl4 and H2S gases three factors of heating temperature, inner pressure of furnace and TiCl4/H2S gas mole fraction were ex-amined systematically. To obtain solid films of Li2O-B2O3-SiO2 electrolytes by r.f. sputtering for thin proto-type batteries of Li/Li2O-B2O3-SiO2TiS2, sputtering conditions were examined. TiS2 cathode films showed columnar structure, namely c axis oriented parallely. At low pressure of reaction chamber and low heating temperature, surface of smooth TiS2 films couldd be obtained. Ionic conductivity of Li2O-B2O3-SiO2 films manufactured by r.f. magnetron sputtering were 3$\times$10-7$\Omega$-1cm-1 and electron conductivities were 10-11$\Omega$-1cm-1. Open cell voltage of thin lithium batteries were 2.32V with a designed prototype cell.

  • PDF

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

  • Seo, Bosung;Song, Kuk Hyun;Park, Kwangsuk
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1232-1240
    • /
    • 2018
  • Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

중성자 라디오그래피 방법을 이용한 직접 메탄올 연료전지 공기극의 내부 물 분포 가시화 (Visualization of Water Distribution in Cathode Side of a Direct Methanol Fuel Cell Using Neutron Radiography)

  • 제준호;도승우;김태주;김종록;;김무환
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.965-970
    • /
    • 2012
  • 본 연구에서는 한국원자력연구원 중성자 영상장치와 중성자 영상법을 이용하여 운전 조건에 따른 DMFC 공기극 내부의 물 및 탄소 분포 변화를 가시화하였다. 운전 중에 연료극에서 발생하는 탄산 가스 때문에 정량적인 물량 계측은 힘들지만, 개회로 결과와 비교했을 때, 상대적으로 탄산가스와 물 분포변화를 가시화할 수 있었다. 이는 중성자 영상법은 직접 메탄올 연료전지의 공기극 채널 형상 최적화 및 적절한 물 관리에 유용한 정보를 제공할 수 있으며, 이를 바탕으로 성능 향상에 크게 기여할 것으로 예상된다.

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.