DOI QR코드

DOI QR Code

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells

효소연료전지의 Anode 제조조건이 OCV에 미치는 영향

  • Received : 2014.06.11
  • Accepted : 2014.07.16
  • Published : 2015.02.01

Abstract

Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

효소 전극 anode와 PEMFC용 전극 cathode를 이용하여 효소연료전지를 구동하였다. 효소 anode는 그래파이트 분말과 효소로서 글루코스 산화제, 전자매개체로서 페로센을 혼합해 압축해서 만들고 Nafion 이오노머로 코팅하였다. anode 제조조건을 변화시키며 OCV를 측정해 효소 anode 제조 최적조건을 찾았다. 효소 anode 압축 시 최적 압력은 9.0 MPa였다. 효소 anode에서 그래파이트가 60%일 때 최고의 OCV를 나타냈다. anode 기질 용액의 최적 글루코스 농도는 1.7 mol/l이었으며, anode의 효소 활성은 7일 동안 안정적으로 유지되었다.

Keywords

References

  1. Heller, A., "Miniature Biofuel Cells," Phys. Chem. Chem. Phys., 6, 209-216(2004). https://doi.org/10.1039/b313149a
  2. Mano, N., Mao, F. and Heller, A., "Characteristics of a Miniature Compartment-less Glucose-$O_2$ Biofuel Cell and Its Operation in a Living Plant," J. Am. Chem. Soc., 125, 6588-6594(2003). https://doi.org/10.1021/ja0346328
  3. Mano, N., Mao, F. and Heller, A., "A Miniature Biofuel Cell Operating in A Physiological Buffer," J. Am. Chem. Soc., 124, 12962-12963(2002). https://doi.org/10.1021/ja028514g
  4. Mano, N., Mao, F., Shin, W., Chen, T. and Heller, A., "A Miniature Biofuel Cell Operating at 0.78 V,"Chem. Commun., 518-519(2003).
  5. Leech, D., Kavanagh, P. and Schuhmann, W., "Enzymatic Fuel Cells: Recent Progress," Electrochim. Acta, 84, 223-234(2012). https://doi.org/10.1016/j.electacta.2012.02.087
  6. Yuhashi, N., Tomiyama, M., Okuda, J., Igarashi, S., Ikebukuro, K. and Sode, K., "Glucose of a Novel Glucose Enzyme Fuel Cell System Employing Protein Engineered PQQ Glucose Dehydrogenase," Biosens. Bioelectron., 20, 2145-2150(2005). https://doi.org/10.1016/j.bios.2004.08.017
  7. Jenkins, P., Tuurla, S., Vaari, A., Valkiainen, M., Smolander, M. and Leech, D., "A Mediated Glucose/oxygen Enzymatic Fuel Cell Based on Printed Carbon Inks Containing Aldose Dehydrogenase and Laccase as Anode and Cathode," Enzyme Microb. Technol., 50, 181-187(2012). https://doi.org/10.1016/j.enzmictec.2011.12.002
  8. Tsujimura, S., Kano, K. and Ikeda, T., "Glucose/$O_2$, Biofuel Cell Operating at Physiological Conditions," Electrochemistry, 70, 940(2002).
  9. Sato, F., Togo, M., Islam, M. K., Matsue, T., Kosuge, J., Fukasaku, N., Kurosawa, S. and Nishizawa, M., "Enzyme-based Glucose Fuel Cell Using Vitamin $K_3$-immobilized Polymer as An Electron Mediator," Electrochem. Commun., 7, 643-647(2005). https://doi.org/10.1016/j.elecom.2005.04.015
  10. Kim, H., Lee, I., Kwon, Y., Kim, B., Ha, S., Lee, J. and Kim, J., "Immobilization of Glucose Oxidase into Polyaniline Nanofiber Matrix for Biofuel Cell Applications," Biosens. Bioelectron., 26, 3908-3913(2011). https://doi.org/10.1016/j.bios.2011.03.008
  11. Cosnier, S., Shan, D. and Ding, S. N., "An Easy Compartment-less Biofuel Cell Construction Based on the Physical co-inclusion of Enzyme and Mediator Redox Within Pressed Graphite Discs," Electrochem. Commun., 12, 266-269(2010). https://doi.org/10.1016/j.elecom.2009.12.011
  12. Zebda, A., Gondran, C., Cinquin, P. and Consier, S., "Glucose Biofuel Cell Construction Based on Enzyme, Graphite Particle and Redox Mediator Compression," Sens. Actuators B-Chem., 173, 760-764(2012). https://doi.org/10.1016/j.snb.2012.07.089
  13. Bergmeyer, H. U., Gawehn, K. and Grassl, M., "Methods of Enzyme Analysis," second ed., Academic Press Inc., New York, 457-458 (1974).
  14. Song, J., Woo, M., Kim, K., Kim, S., Ahn, B., Lim, T. and Park, K., "Decrease of PEMFC Performance by Ion Contamination," Korean Chem. Eng. Res., 50, 187-190(2012). https://doi.org/10.9713/kcer.2012.50.2.187
  15. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6

Cited by

  1. 효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향 vol.54, pp.2, 2015, https://doi.org/10.9713/kcer.2016.54.2.171