• Title/Summary/Keyword: online automatic system

Search Result 93, Processing Time 0.025 seconds

A Study on Insulation Degradation Diagnosis Using a Neural Network (신경회로망을 이용한 절연 열화진단에 관한 연구)

  • 박재준
    • The Journal of Information Technology
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 1999
  • In this paper, we purpose automatic diagnosis in online, as the fundamental study to diagnose the partial discharge mechanism and to predict the lifetime by introduction a neural network. In the proposed method, we use AE(acoustic emission) sensing system and calculate a quantitative statistic parameter by pulse number and amplitude. Using statically parameters such as the center of gravity(G) and the gradient if the discharge distribute(C), we analyzed the early stage and the middle stage. the quantitative statistic parameters are learned by a neural network. The diagnosis of insulation degradation and a lifetime prediction by the early stage time are achieved. On the basis of revealed excellent diagnosis ability through the neural network learning for the patterns during degradation, it was proved that the neural network is appropriate for degradation diagnosis and lifetime prediction in partial discharge.

  • PDF

Abnormal Coating Buildup on Si Bearing Steels in Zn Pot During Line Stop

  • Weimin Zhong;Rob Dziuba;Phil Klages;Errol Hilado
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-92
    • /
    • 2024
  • A hot-dip simulator was utilized to replicate abnormal coating buildup observed during line stops at galvanize lines, assessing the influence of processing conditions on buildup (up to 14 mm/side). Steel samples from 19 coils (comprising IF, BH, LCAK, HSLA, DP600-DP1180, Si: 0.006 - 0.8 wt%, P: 0.009 - 0.045 wt%) were examined to explore the phenomenon of heavy coating growth. It was discovered that heavy coating buildup (~3 mm/h) and rapid strip dissolution (~0.17 mm/h) in a GA or GI pot can manifest with specific combinations of steel chemistry and processing conditions. The results reveal the formation of a unique coating microstructure, characterized by a blend of bulky Zeta crystals and free Zn pockets/networks due to the "Sandlin" growth mechanism. Key variables contributing to abnormal coating growth include steel Si content, anneal temperature, dew point in heating and soaking furnaces, Zn pot temperature, Zn bath Al%, and cold-rolling reduction%. At ArcelorMittal Dofasco galvanize lines, an automatic online warning system for operators and special scheduling for incoming Si-bearing steels have been implemented, effectively preventing further heavy buildup occurrences.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

Product Evaluation Summarization Through Linguistic Analysis of Product Reviews (상품평의 언어적 분석을 통한 상품 평가 요약 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this paper, we introduce a system that summarizes product evaluation through linguistic analysis to effectively utilize explosively increasing product reviews. Our system analyzes polarities of product reviews by product features, based on which customers evaluate each product like 'design' and 'material' for a skirt product category. The system shows to customers a graph as a review summary that represents percentages of positive and negative reviews. We build an opinion word dictionary for each product feature through context based automatic expansion with small seed words, and judge polarity of reviews by product features with the extracted dictionary. In experiment using product reviews from online shopping malls, our system shows average accuracy of 69.8% in extracting judgemental word dictionary and 81.8% in polarity resolution for each sentence.

Realtime Facial Expression Data Tracking System using Color Information (컬러 정보를 이용한 실시간 표정 데이터 추적 시스템)

  • Lee, Yun-Jung;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.159-170
    • /
    • 2009
  • It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.

Payment Settlement Framework for Exporting Real-Time Online Financial Solution (실시간 온라인 금융솔루션 수출을 위한 지급결제프레임워크)

  • Bae, Huynki;Ahn, Yunji;Park, Kwangho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.55-66
    • /
    • 2017
  • Korean small and medium sized software companies have tried to export their solutions or services to overseas markets. In 2016, exports of the software industry increased by 6.0% from the previous year, and the value added of the industry was 2.2 times higher than that of the manufacturing industry. From a long-term perspective, it is important to secure a global competitive advantage in order to sustain the export high value-added of the software industry. The obstacles to entry into the overseas market of small to medium enterprises are as follows: first, difficulty in product development and localization of marketing; second, lack of investment for overseas expansion; and finally, competitiveness of software technology. In particular, To overcome such obstacles, Korean small and medium sized software companies should increase the technical perfection and secure software export competitiveness. The paper presents a payment settlement framework enabling adaptive reuse and semiautomatic development of global payment settlement services. The quantitative and qualitative evaluation results are presented with domestic and overseas case studies as follows: Firstly, semi-automatic development is realized successfully by applying the framework. Secondly, it is possible to maintain consistent quality of software and to deliver maintenance services without relying on the internal human resources. Thirdly, it is possible to reduce the project duration of the same development cope to less than 50% by applying the framework. Finally, because it is based on BPMN 2.0, which is a high level design diagram, it is expected that it will be easy to implement through components connection and reduce difficulties in technology transfer and localization. Also, at the time of runtime operation, it will be effective to understand the design idea easily and to carry out additional developments without human resource who participated in the initial project.

A Study on Difficulty Equalization Algorithm for Multiple Choice Problem in Programming Language Learning System (프로그래밍 언어 학습 시스템에서 객관식 문제의 난이도 균등화 알고리즘에 대한 연구)

  • Kim, Eunjung
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.55-65
    • /
    • 2019
  • In programming language learning system of flip learning methods, the evaluation of cyber lectures generally proceeds from online to multiple choice questions. In this case, the questions are randomly extracted from the question bank and given to individual learners. In order for these evaluation results to be reflected in the grades, the equity of the examination question is more important than anything else. Especially in the programming language subject, the degree of difficulty that learners think can be different depending on the type of problem. In this paper, we classify the types of multiple-choice problems into two categories, and manage the difficulty level by each type. And we propose a question selection algorithm that considers both difficulty level and type of question. Considering the characteristics of the programming language, experimental results show that the proposed algorithm is more efficient and fair than the conventional method.

"Where can I buy this?" - Fashion Item Searcher using Instance Segmentation with Mask R-CNN ("이거 어디서 사?" - Mask R-CNN 기반 객체 분할을 활용한 패션 아이템 검색 시스템)

  • Jung, Kyunghee;Choi, Ha nl;Sammy, Y.X.B.;Kim, Hyunsung;Toan, N.D.;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.465-467
    • /
    • 2022
  • Mobile phones have become an essential item nowadays since it provides access to online platform and service fast and easy. Coming to these platforms such as Social Network Service (SNS) for shopping have been a go-to option for many people. However, searching for a specific fashion item in the picture is challenging, where users need to try multiple searches by combining appropriate search keywords. To tackle this problem, we propose a system that could provide immediate access to websites related to fashion items. In the framework, we also propose a deep learning model for an automatic analysis of image contexts using instance segmentation. We use transfer learning by utilizing Deep fashion 2 to maximize our model accuracy. After segmenting all the fashion item objects in the image, the related search information is retrieved when the object is clicked. Furthermore, we successfully deploy our system so that it could be assessable using any web browser. We prove that deep learning could be a promising tool not only for scientific purpose but also applicable to commercial shopping.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Automatic Recommendation of (IP)TV programs based on A Rank Model using Collaborative Filtering (협업 필터링을 이용한 순위 정렬 모델 기반 (IP)TV 프로그램 자동 추천)

  • Kim, Eun-Hui;Pyo, Shin-Jee;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.238-252
    • /
    • 2009
  • Due to the rapid increase of available contents via the convergence of broadcasting and internet, the efficient access to personally preferred contents has become an important issue. In this paper, for recommendation scheme for TV programs using a collaborative filtering technique is studied. For recommendation of user preferred TV programs, our proposed recommendation scheme consists of offline and online computation. About offline computation, we propose reasoning implicitly each user's preference in TV programs in terms of program contents, genres and channels, and propose clustering users based on each user's preferences in terms of genres and channels by dynamic fuzzy clustering method. After an active user logs in, to recommend TV programs to the user with high accuracy, the online computation includes pulling similar users to an active user by similarity measure based on the standard preference list of active user and filtering-out of the watched TV programs of the similar users, which do not exist in EPG and ranking of the remaining TV programs by proposed rank model. Especially, in this paper, the BM (Best Match) algorithm is extended to make the recommended TV programs be ranked by taking into account user's preferences. The experimental results show that the proposed scheme with the extended BM model yields 62.1% of prediction accuracy in top five recommendations for the TV watching history of 2,441 people.