In this paper, an on-chip learning pulse-mode digital neural network with a massively parallel yet compact and flexible network architecture is suggested. Algebraic neural operations are replaced by stochastic processes using pseudo-random sequences and simple logic gates are used as basic computing elements. Using Back-propagation algorithm both feed-forward and learning phases are efficiently implemented with simple logical gates. RNG architecture using LFSR and barrel shifter are adopted to avoid some correlation between pulse trains. Suggested network is designed in digital circuit and its performance is verified by computer simulation.
Network-on-chip (NoC) architecture provides a highper-formance communication infrastructure for system-on-chip designs. Circuit-switched networks guarantee transmission latency and throughput; hence, they are suitable for NoC architecture with real-time traffic. In this paper, we propose an efficient integrated scheme which automatically maps application tasks onto NoC tiles, establishes communication circuits, and allocates a proper bandwidth for each circuit. Simulation results show that the average waiting times of packets in a switch in $6{\times}6$6, $8{\times}8$, and $10{\times}10$ mesh NoC networks are 0.59, 0.62, and 0.61, respectively. The latency of circuits is significantly decreased. Furthermore, the buffer of a switch in NoC only needs to accommodate the data of one time slot. The cost of the switch in the circuit-switched network can be reduced using our scheme. Our design provides an effective solution for a critical step in NoC design.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.1
/
pp.166-173
/
2013
As the number of IPs and the communication volume among them have constantly increased, on-chip crossbar network is now the most widely-used on-chip communication backbone of contemporary SoCs. The on-chip crossbar network consists of multiple crossbars and the connections among the IPs and the crossbars. As the complexity of SoCs increases, it has also become more and more complex to determine the topology of the crossbar network. To tackle this problem, this paper proposes an on-chip crossbar network topology method for application-specific systems. The proposed method uses mixed integer linear programming to solve the topology synthesis problem, thus the global optimality is guaranteed. Unlike the previous MILP-based methods which represent the topology with adjacency matrixes of IPs and crossbar switches, the proposed method uses the communication edges among IPs as the basic element of the representation. The experimental results show that the proposed MILP formulation outperforms the previous one by improving the synthesis speed by 77.1 times on average, for 4 realistic benchmarks.
In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on. The cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling processes for various cutting conditions, their mathematical model is important and the model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging forces of cutting tests. In this paper the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in the learning stage as the omitted number of experimental data increase the average errors increase as well.
A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.
Proceedings of the Acoustical Society of Korea Conference
/
1993.06a
/
pp.117-120
/
1993
In this paper, we explore the possibility of URAN(Universally Reconstructable Artificial Neural-network) VLSI chip for speech recognition. URAN, a newly developed analog-digital hybrid neural chip, is discussed in respects to its input, output, and weight accuracy and their relations to its performance on speaker independent digit recognition. Multi-layer perceptron(MLP) nets including a large frame input layer are used to recognize a digit syllable at a forward retrieval. The simulation results using the full and limited floating precision computations for the input, output, and weight variables of the network give the comparable classification performance. An MLP with piecewise linear hidden and output units is also trained successfully using low accuracy computation.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.3
/
pp.270-279
/
2000
This paper describes the on-chip learning algorithm of neural networks using the stochastic pulse arithmetic. Stochastic pulse arithmetic is the computation using the numbers represented by the probability of 1' and 0's occurrences in a random pulse stream. This stochastic arithmetic has the merits when applied to neural network ; reduction of the area of the implemented hardware and getting a global solution escaping from local minima by virtue of the stochastic characteristics. And in this study, the on-chip learning algorithm is derived from the backpropagation algorithm for effective hardware implementation. We simulate the nonlinear separation problem of the some character patterns to verify the proposed learning algorithm. We also had good results after applying this algorithm to recognize printed and handwritten numbers.
Journal of the Microelectronics and Packaging Society
/
v.24
no.3
/
pp.1-6
/
2017
As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.
A bio-inspired vision chip for edge detection was fabricated using 0.35 ${\mu}m$ double-poly four-metal complementary metal-oxide-semiconductor technology. It mimics the edge detection mechanism of a biological retina. This type of vision chip offer several advantages including compact size, high speed, and dense system integration. Low resolution and relatively high power consumption are common limitations of these chips because of their complex circuit structure. We have tried to overcome these problems by rearranging and simplifying their circuits. A vision chip of $160{\times}120$ pixels has been fabricated in $5{\times}5\;mm^2$ silicon die. It shows less than 10 mW of power consumption.
Ansari, M. Adil;Kim, Dooyoung;Jung, Jihun;Park, Sungju
JSTS:Journal of Semiconductor Technology and Science
/
v.15
no.1
/
pp.85-95
/
2015
Network-on-chip (NoC) has evolved to overcome the issues of traditional bus-based on-chip interconnect. In NoC-reuse as TAM, the test schedulers are constrained with the topological position of cores and test access points, which may negatively affect the test time. This paper presents a scalable hybrid test data transportation scheme that allows to simultaneously test multiple heterogeneous cores of NoC-based SoCs, while reusing NoC as TAM. In the proposed test scheme, single test stimuli set of multiple CUTs is embedded into each flit of the test stimuli packets and those packets are multicast to the targeted CUTs. However, the test response packets of each CUT are unicast towards the tester. To reduce network load, a flit is filled with maximum possible test response sets before unicasting towards the tester. With the aid of Verilog and analytical simulations, the proposed scheme is proved effective and the results are compared with some recent techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.