• Title/Summary/Keyword: oil cost

Search Result 627, Processing Time 0.134 seconds

Experimental Study on the Calibration of Bi-directional High Pressure Pile Load Test (양방향 고유압 말뚝재하시험장치의 보정에 관한 실험적 연구)

  • Choi, Yongkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.303-311
    • /
    • 2008
  • In the case of bi-directional high pressure pile load test with double-acting jack, the shortcomings of bi-directional pile load test with single-acting jack could be solved, low-cost of test could be sure, the limits of loading capacity could be overcome and quality assurance of service plie could be confirmed. In this study, to confirm the stability, the reliability and the application of bi-directional high pressure pile load test with double-acting jack, the calibration test for high pressure oil jacks, the length of high pressure hose and tunable high pressure pipe system were performed. As a result, credibility was very high because the reliability of test results was approached at about 1.0.

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Application Effect of Heating Energy Saving Package on Venlo Type Glasshouse of Paprika Cultivation (파프리카 재배 벤로형 유리온실에서 난방에너지 절감 패키지 기술 적용효과)

  • Kwon, Jin Kyung;Jeon, Jong Gil;Kim, Seung Hee;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.225-231
    • /
    • 2016
  • Glasshouse heating package technologies to improve energy usage efficiency in winter were developed. Heating package was composed of the ground water source heat pump with heating capacity of 105kW, the aluminum multi-layer thermal curtain with six layers of different materials and the root zone local heater with XL pipes of ${\phi}20mm$. Venlo type glasshouse($461m^2$) with the heating package was compared with the same type and area control glasshouse with the light oil boiler, the usual non-woven fabric thermal curtain with respect to the glasshouse inside temperature, relative humidity, crop growth, and heating energy consumption. The results of test in paprika cultivation glasshouses showed that the air temperature inside glasshouse with aluminum multi-layer thermal curtain was maintained $2.2^{\circ}C$ higher than that of control glasshouse in un-heating night time and the temperature in bed with root zone local heating was $4.7^{\circ}C$ higher than that in bed without local heating. Average heating coefficient of performance(COP) of the ground water source heat pump used in paprika cultivation was 3.7 and the glasshouse inside temperature was maintained at $21^{\circ}C$ of heating set up temperature. The heating energy consumptions per 10a were measured at 14,071L of light oil and 364kWh of electric power for the control glasshouse and 35,082kWh for the glasshouse applied heating package. As results, the heating cost of the glasshouse applied heating package was 87 percent lower than that of control glasshouse. The growths of paprika in glasshouses of control and applied heating package did not show any significant difference.

Heating Effect by Electric Radiator in Greenhouse of Chrysanthemum Cultivation (전기 방열기가 국화재배온실의 난방에 미치는 영향)

  • Suh, Won-Myung;Leem, Jae-Woon;Kim, Young-Ju;Min, Young-Bong;Kim, Hyeon-Tae;Huh, Moo-Ryong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • An analysis in heating effects of an electric radiator located in a 1-2W type chrysanthemum (3 cultivars) cultivation greenhouse installed in Gyeongsang National University drew the following conclusions. During the experiment period, the highest, average, and the lowest outside temperatures were in the ranges of $-3.8{\sim}21.3^{\circ}C$, $-5.2{\sim}16.1^{\circ}C$ and $-12.5{\sim}14.4^{\circ}C$, respectively, and the average relative humidity inside and outside the greenhouses were in the ranges of 43.5~98.6% and 35.2~100%, respectively. From mid-December to early February, the lowest outside temperature was recorded as approximately $-5.0{\sim}-10.0^{\circ}C$, which showed that it tended to be relatively lower than the temperatures recorded at the Jinju Meteorological Observatory. During the night, the leaf temperature measured directly under the radiator tended to be higher by $2{\sim}3^{\circ}C$ than that those at the middle point of the radiator, or higher by a negligible amount. In the case of root zone temperature, it was found that there was almost no difference between temperatures of the part directly under and the middle point, and the time when the highest temperature of root zone and other highest temperatures took place showed that there was about a 2-hour delay phenomenon. The total electricity consumption, energy supply and total heating cost during the experiment period were 2,800 kWh, 2,408,000 kcal and 112,000 won, respectively. When diesel, a kind of fossil fuel, was used as heating oil, the total heating cost was around 224,500 won. It was estimated that the total heating cost could be reduced by around 50% if a radiator was used.

Ecological Risk Assessment of Residual Petroleum Hydrocarbons using a Foodweb Bioaccumulation Model (먹이연쇄 생물축적 모형을 이용한 잔류유류오염물질의 생태위해성평가)

  • Hwang, Sang-Il;Kwon, Jung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.947-956
    • /
    • 2009
  • Residual petroleum hydrocarbons after an oil spill may accumulate in the marine benthic ecosystem due to their high hydrophobicity. A lot of monitoring data are required for the estimation of ecosystem exposure to residual petrochemicals in an ecological risk assessment in the affected region. To save time and cost, the environmental exposure to them in the affected ecosystem can also be assessed using a simple food-web bioaccumulation model. In this study, we evaluated residual concentrations of four selected polycyclic aromatic hydrocarbons (phenanthrene, anthracene, pyrene, and benzo[a]pyrene) in a hypothetic benthic ecosystem composed of six species under two exposure scenarios. Body-residue concentration ranged 5~250 mg/kg body depending on trophic positions in an extreme scenario in which the aqueous concentrations of PAHs were assumed to be one-tenth of their aqueous solubility. In addition, bioconcentration factors (BCFs) and bioaccumulation factors (BAFs) were evaluated for model species. The logarithm of bioconcentration factor (log BCF) linearly increased with increasing the logarithm of 1-octanol-water partition coefficient (log $K_{OW}$) until log $K_{OW}$ of 7.0, followed by a gradual decrease with further increase in log $K_{OW}$ without metabolic degradation. Biomagnification became significant when log $K_{OW}$ of a pollutant exceeded 5.0 in the model ecosystem, indicating that investigation of food-web structure should be critical to predict biomagnifications in the affected ecosystem because log $K_{OW}$ values of many petrochemicals are higher than 5.0. Although further research is required for better site-specific evaluation of exposure, the model simulation can be used to estimate the level of the ecosystem exposure to residual oil contaminants at the screening level.

Functional Magnetizing Treatment of Natural Quartz and Volcanic Lava Scoria (내추럴 퀄쯔와 화산암재 스코리아의 기능성 마그네타이징 처리)

  • 소대화;소현준;배두안;김정희
    • Journal of the Speleological Society of Korea
    • /
    • no.63
    • /
    • pp.1-8
    • /
    • 2004
  • The non-magnetic materials with non-conductive showing high structure dispersity were developed on the base of natural quartz and lava-scoria which was collected from Je-ju island in Korea, and treated by methane-chemical technology those were obtained novel properties of magnetization through the analyzing. Depending on the processing conditions and subsequent applications the materials produced by strong methane-chemical reaction (MCR) in alcohol solution showed concurrently magnetic, dielectric and electrical properties. The obtained magnetic-electrical powders classified by aggregate complex of their features as segnetomagnetics, containing a dielectric material as a carrying nucleus, particularly the quartz on that surface one or more layers of different compounds were synthesized having thickness up to 10~50 nm and showing magnetic, electrical and other properties. It was confirmed in magnetizing process that powders of quartz and lava-scoria produced by MCR were better oil adsorbent as of oleophilic and floating matter on water surface although their specific gravities are comparably more than 1 in quartz or less than unity, as that of water, in lava-scoira. Therefore, it will be Possible and very useful to remove low density and light gravity oil spillage in difficult recovery from sea and inland water contamination spread on water surface, by marine accident and ship sinking accident occurring frequently in recent years, by way of magnetic adsorbent conveyer system in continuous, if it could be built up the mass Production system of water-floating magnetizable oleophilic adsorbent materials with use of iow cost and good Qualify lava-scoria spread on volcano district in Je-ju island. And, there will also be urgent advent of necessity with strong possibility to develop useful applications of various magnetic functional materials include oleophilic adsorbent for removal of sea oil-contaminants and maritime pollutants, and other kinds of various utilities in industrial applications and practical uses of novel functional materials in the fields of environments and health care applications with in deep expectation.

Eco-friendly Control of Whiteflies by Two-Fluid Fogging System with Natural Substances in Greenhouses (이류체 포그시스템 및 천연물을 이용한 친환경적 가루이 방제)

  • Kim, Sung-Eun;Lee, Sang-Don;Lee, Moon-Haeng;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.114-119
    • /
    • 2012
  • We have conducted 4 experiments to develop the most environmental and effective use of the two-fluid fog system to prevent and exterminate whiteflies in tomato cultivation. In particular, these experiments used Vitamini tomatoes grown in stand-alone greenhouses at Buyeo Tomato Experiment Station as subjects. Each experiment utilized the fog system in a different way. The first experiment provided the control group, which was subject to the two-fluid fog system without additional humidity control. In the second experiment, the two-fluid fog system controlled the humidity level to be above 70%. The third and the fourth experiment utilized natural substances, which were 1.5 mg/L of Neem Oil and 2 mg/L of Oleic acid respectively, without additional humidity control. From the first experiment, we could observe that a simple use of the two-fluid fog system decreased the density of whiteflies in the greenhouses. This impact of the fog system on whiteflies was greater in the second experiment. By comparing the first and the second experiment, we concluded that whiteflies are more effectively prevented by maintaining a higher humidity level via the fog system's smaller water droplets that float in the air for longer time than the standard fog system in rather dry condition. In the third and the fourth experiments, the extermination level was 78% and 76.4% respectively, comparing only 53% in the first experiment without the humidity control. Therefore, using the natural substances in addition to the humidity control increases the extermination effectiveness. Considering the similar results from the 3rd and the 4th experiments, Oleic acid has a greater appeal for its lower price. Using the two-fluid fog system to both control the humidity on a daily basis and spray the substances for occasional extermination would reduce labor cost and increase production in an environmental way.

토양 및 지하수 Investigation 과 Remediation에 대한 현장적용

  • Wallner, Heinz
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.44-63
    • /
    • 2000
  • Situated close to Heathrow Airport, and adjacent to the M4 and M25 Motorways, the site at Axis Park is considered a prime location for business in the UK. In consequnce two of the UK's major property development companies, MEPC and Redrew Homes sought the expertise of Intergeo to remediate the contaminated former industrial site prior to its development. Industrial use of the twenty-six hectare site, started in 1936, when Hawker Aircraft commence aircraft manufacture. In 1963 the Firestone Tyre and Rubber Company purchased part of the site. Ford commenced vehicle production at the site in the mid-1970's and production was continued by Iveco Ford from 1986 to the plant's decommissioning in 1997. Geologically the site is underlain by sand and gravel, deposited in prehistory by the River Thames, with London Clay at around 6m depth. The level of groundwater fluctuates seasonally at around 2.5m depth, moving slowly southwest towards local streams and watercourses. A phased investigation of the site was undertaken, which culminated in the extensive site investigation undertaken by Intergeo in 1998. In total 50 boreholes, 90 probeholes and 60 trial pits were used to investigate the site and around 4000 solid and 1300 liquid samples were tested in the laboratory for chemical substances. The investigations identified total petroleum hydrocarbons in the soil up to 25, 000mg/kg. Diesel oil, with some lubricating oil were the main components. Volatile organic compounds were identified in the groundwater in excess of 10mg/l. Specific substances included trichloromethane, trichloromethane and tetrachloroethene. Both the oil and volatile compounds were widely spread across the site, The specific substances identified could be traced back to industrial processes used at one or other dates in the sites history Slightly elevated levels of toxic metals and polycyclic aromatic hydrocarbons were also identified locally. Prior to remediation of the site and throughout its progress, extensive liaison with the regulatory authorities and the client's professional representatives was required. In addition to meetings, numerous technical documents detailing methods and health and safety issues were required in order to comply with UK environmental and safety legislation. After initially considering a range of options to undertake remediation, the following three main techniques were selected: ex-situ bioremediation of hydrocarbon contaminated soils, skimming of free floating hydrocarbon product from the water surface at wells and excavations and air stripping of volatile organic compounds from groundwater recovered from wells. The achievements were as follows: 1) 350, 000m3 of soil was excavated and 112, 000m3 of sand and gravel was processed to remove gravel and cobble sized particles; 2) 53, 000m3 of hydrocarbon contaminated soil was bioremediated in windrows ; 3) 7000m3 of groundwater was processed by skimming to remove free floating Product; 4) 196, 000m3 of groundwater was Processed by air stripping to remove volatile organic compounds. Only 1000m3 of soil left the site for disposal in licensed waste facilities Given the costs of disposal in the UK, the selected methods represented a considerable cost saving to the Clients. All other soil was engineered back into the ground to a precise geotechnical specification. The following objective levels were achieved across the site 1) By a Risk Based Corrective Action (RBCA) methodology it was demonstrated that soil with less that 1000mg/kg total petroleum hydrocarbons did not pose a hazard to health or water resources and therefore, could remain insitu; 2) Soils destined for the residential areas of the site were remediated to 250mg/kg total petroleum hydrocarbons; in the industrial areas 500mg/kg was proven acceptable. 3) Hydrocarbons in groundwater were remediated to below the Dutch Intervegtion Level of 0.6mg/1; 4) Volatile organic compounds/BTEX group substances were reduced to below the Dutch Intervention Levels; 5) Polycyclic aromatic hydrocarbons and metals were below Inter-departmental Committee for the Redevelopment of Contaminated Land guideline levels for intended enduse. In order to verify the qualify of the work 1500 chemical test results were submitted for the purpose of validation. Quality assurance checks were undertaken by independent consultants and at an independent laboratory selected by Intergeo. Long term monitoring of water quality was undertaken for a period of one year after remediation work had been completed. Both the regulatory authorities and Clients representatives endorsed the quality of remediation now completed at the site. Subsequent to completion of the remediation work Redrew Homes constructed a prestige housing development. The properties at "Belvedere Place" retailed at premium prices. On the MEPC site the Post Office, amongst others, has located a major sorting office for the London area. Exceptionally high standards of remediation, control and documentation were a requirement for the work undertaken here.aken here.

  • PDF

Variation of Indoor Air Temperature by using Hot Water Piping in Greenhouse (온수배관에 의한 온실 내부의 온도변화)

  • Yoon, Yong-Cheol;Shin, Yik-Soo;Bae, Seoung-Beom;Kim, Hyeon-Tae;Choi, Jin-Sik;Suh, Won-Myung
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.179-190
    • /
    • 2012
  • This study was performed to obtain a heat saving effect and enhance the efficiency of a greenhouse by using a hot water piping in order to minimize the operating costs of a greenhouse as oil prices continue to rise. This method also reduces the likelihood of accidents caused by snowdrifts in regions with heavy snowfall. In general, the experimental plot was $2.0{\sim}6.0^{\circ}C$ higher than the control plot. When the skylight felt was opened, the minimum temperature was in the range of $3.0{\sim}12.0^{\circ}C$. Therefore, we judged that damage caused by snowdrifts may be prevented partly by active heating. The temperature difference inside of the greenhouse by height was insignificant. The maximum heating load of the greenhouse according to crop was respectively about $37,000kcal{\cdot}h^{-1}$ and $41,700kcal{\cdot}h^{-1}$. During the experiment, the heat value of each designed temperature in the range of the minimum ambient temperature $-11.9{\sim}4.0^{\circ}C$ was about 95,000~322,000 kcal and it was in the range of $6,050{\sim}20,900kcal{\cdot}h^{-1}$. If it is compared with the maximum heating load, it can be shown that about 15~56% of the heating energy can be supplied. The total heat value and the amount of power consumption were 2,629,025 kcal and 677.3 kWh respectively during the experiment. If it is heated with diesel, a fossil fuel, the consumption during the experiment was 291 L and the cost was 331,700won. Total cost of using electric power was about 24,400 won and it is shown that it is about 7.5% of the cost of diesel consumption. Also, if the total amount of power consumption is converted into energy, it is approximately 582,200 kcal and the energy was just about 22% of the total heat value.

Study on the Activation Plan for Utilization of Agri-food by-products as Raw Materials for TMR (TMR 원료로 이용하는 농식품 부산물 사료 이용 활성화 방안에 관한 연구)

  • Chung, Sung Heon;Park, Hyun Woo;Kwon, Byung Yeon;Gu, Gyo Yeong;Bang, Seo Yeon;Park, Kyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.296-306
    • /
    • 2014
  • This study was conducted to survey and analyze the quantity of various organic wastes and to vitalize the utilization of agri-food by-products as raw materials for Total mixed ration (TMR), to improve feed cost savings and the quality of animal products. On-the-spot obstacles for animal farmers, along with legal and institutional alternatives are presented. The results are as follows. First, organic wastes in Korea are managed by the Allbaro system created in the Wastes Control Act, which processes 10,488 tons of cooking oil waste, 832,493 tons of animal and plant residues, 5,740 tons of animal carcasses, 1,171,892 tons of animal residues, and 2,172,415 tons of plant residues including 12,905 tons of rice hull and bran, for a total of 4,205,931 tons. Raw materials for TMR, namely rice hulls and bran as well as plant residues, accounted for 51.7% of the total national organic waste. The top 10 municipalities process 76~100% of all organic wastes and a supply management system is needed for the waste. Second, the 10 major agri-food by-products used as raw materials for TMR are bean curd by-product, rice bran, oil-cake, brewers dried grain, Distiller's Dried Grains with Solubles (DDGS), barley bran, soy sauce by-product, citrus fruit by-product, mushroom by-product and other food by-product (bread, noodles, snacks, etc.). Third, the biggest difficulties in using agri-food by-products are legal obstacles. Because agri-food by-products are regulated as industrial wastes by the Waste Control Act, animal farmers that wish to use them have legal reporting obligations including the installation of recycling facilities. To enable the use of agri-food by-products as raw materials for TMR, waste management system improvements such as 'the end of waste status' and the establishment of more than 10 public distribution centers nationwide are deemed essential.