• Title/Summary/Keyword: oil composition

Search Result 1,257, Processing Time 0.04 seconds

Physicochemical Properties of Flours Prepared from Sweet Potatoes with Different Flesh Colors (고구마의 육질색 종류별 고구마 분말의 이화학적 특성)

  • Kim, Kyung-Eun;Kim, Sung-Soo;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.10
    • /
    • pp.1476-1480
    • /
    • 2010
  • Physicochemical properties of flours prepared from sweet potatoes with different flesh color (white, yellow/orange and purple) were investigated. Sweet potatoes were soaked in solutions of antibrowning agents such as sodium metabisulfite and citric acid, and freeze or hot air-dried prior to grinding to produce sweet potato flours. Sweet potato flours with different flesh colors showed differences in chemical composition. Purplefleshed sweet potato flour had higher protein, ash, and dietary fiber contents that white and yellow/orangefleshed sweet potato flours. Average particle size of yellow/orange-fleshed sweet potato flour was higher than those of white/yellow or purple-fleshed sweet potato flour. Both water absorption index (WAI) and oil absorption capacity of flours prepared from sweet potatoes by hot-air drying were higher than those from sweet potatoes by freeze drying.

A New Perilla Cultivar for Edible Seed 'Dayu' with High Oil Content (기름함량이 높은 종실용 들깨 신품종 '다유')

  • Lee, Myoung-Hee;Jung, Chan-Sik;Oh, Ki-Won;Park, Chung-Berm;Kim, Dae-Gyun;Choi, Jae-Kuen;Nam, Sang-Young
    • Korean Journal of Breeding Science
    • /
    • v.43 no.6
    • /
    • pp.616-619
    • /
    • 2011
  • 'Dayu', a perilla (Perilla frutescens (L.) Britton) cultivar for edible seed was developed by Department of Functional Crop, NICS, RDA in 2004. It was developed from a cross between a pedigree of Daeyeop as a female and YCPL1846 as a male parent in 1994. 'Dayu' could be characterized by white flower color and brown grain color. Dayu shows 127 cm in plant height, and has lodging tolerance. Maturing date of 'Dayu' was October 6, which was similar with that of 'Saeyeopsil'. This new cultivar has high oil content with 48.5% and high linolenic acid in the fatty acid composition. The grain yield potential of 'Dayu' is about 1.44 MT/ha in the regional yield trial.

Physicochemical Properties of Fibrous Material Fraction from By-product of Aloe vera Gel Processing (알로에 베라 겔 가공부산물로서의 섬유질 분획의 성분 및 물리화학적 특성)

  • Baek, Jin-Hong;Lee, Shin-Young
    • Food Engineering Progress
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2010
  • The fibrous material fraction as a by-product from the commercial aloe vera gel processing was obtained and freeze dried. The physicochemical characteristics such as the proximate composition, crystalline/surface structures and several physical functionalities including the water holding capacity (WHC), swelling capacity (SW), oil holding capacity (OHC), emulsion/foam properties and viscosity properties of this powdered sample (100 mesh) were investigated and analyzed by comparison with commercial $\alpha$-cellulose as a reference sample. The total dietary fiber content of powdered sample was very high as much as 87.5%, and the insoluble dietary and soluble dietary fiber content ratios were 77.6 and 22.4%, respectively. The FT-IR spectrum of powdered sample showed a typical polysaccharide property and exhibited a x-ray diffraction pattern for cellulose III and IV like structure. SW (8.24${\pm}$0.15 mL/g), WHC(6.40${\pm}$0.19 g water/g solid) and OHC(10.32${\pm}$0.29 g oil/g solid) of freeze dried aloe cellulose were about 3.3, 1.4 and 2 times higher than those of commercial $\alpha$-cellulose, respectively. Aloe cellulose (~2%, w/v) alone had no foam capacity while improved the foam stability of protein solution (1% albumin+0.5% $CaCl_{2}$) by factor of 300%. Emulsion capacity of 2%(w/v) aloe cellulose was about 70% level of 0.5%(w/v) xanthan gum, but its emulsion stability was about 1.2 times higher than that of xanthan gum. Also, aloe cellulose containing CMC (carboxyl methyl cellulose) of 0.3%(w/v) showed a very good dispersity. Aloe cellulose dispersion of above 1%(w/v) exhibited higher pseudoplasticity and concentration dependence than those of $\alpha$-cellulose dispersion, indicating the viscosity properties for new potential usage such as an excellent thickening agent.

Optimization of Medium for Lipase Production from Zygosaccharomyces mellis SG1.2 Using Statistical Experiment Design

  • Pramitasari, Marisa Dian;Ilmi, Miftahul
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.337-345
    • /
    • 2021
  • Lipase (triacylglycerol lipase, EC 3.1.1.3) is an enzyme capable of hydrolyzing triacylglycerol, to produce fatty acids and glycerol and reverse the reaction of triacylglycerol synthesis from fatty acids and glycerol through transesterification. Applications of lipase are quite widespread in the industrial sector, including in the detergent, paper, dairy, and food industries, as well as for biodiesel synthesis. Lipases by yeasts have attracted industrial attention because of their fast production times and high stability. In a previous study, a lipase-producing yeast isolate was identified as Zygosaccharomyces mellis SG1.2 and had a productivity of 24.56 U/mg of biomass. This productivity value has the potential to be a new source of lipase, besides Yarrowia lypolitica which has been known as a lipase producer with a productivity of 0.758 U/mg. Lipase production by Z. mellis SG1.2 needs to be increased by optimizing the production medium. The aims of this study were to determine the significant component of the medium for lipase production and methods to increase lipase production using the optimum medium. The two methods used for the statistical optimization of production medium were Taguchi and RSM (Response Surface Methodology). The data obtained were analyzed using Minitab 18 and SPSS 23 software. The most significant factors which affected lipase productivity were olive oil and peptones. The optimum medium composition consisted of 1.02% olive oil, 2.19% peptone, 0.05% MgSO4·7H2O, 0.05% KCl, and 0.2% K2HPO4. The optimum medium was able to increase the lipase productivity of Z. mellis SG1.2 to 1.8-fold times the productivity before optimization.

A Comparison the Volatile Aroma Compounds between Ligularia fischeri and Ligularia fischeri var. spiciformis Leaves (곰취와 한대리곰취의 휘발성 향기성분 분석)

  • Han, Sang-Sup;Sa, Jou-Young;Lee, Kyeong-Cheol
    • Journal of Forest and Environmental Science
    • /
    • v.26 no.3
    • /
    • pp.209-217
    • /
    • 2010
  • The volatile aroma of fresh leaves is one of main factor in taste of all the edible green plants. The volatile aroma in almost edible green leaves are suggested as essential oil compounds. Ligularia fischeri, Synurus deltoides, Ligularia fischeri var. spiciformis and Aster scaber are one of the favourable edible green plants in Korea. In this study, volatile aroma compounds from Ligularia fischeri and Ligularia fischeri var. spiciformis species were analyzed by the SPME/GC/MSD method. Ligularia fischeri had 78 volatile aroma compounds such as D-limonene(20.28%), ${\alpha}$-pinene(dextro, 14.15%), L-${\beta}$-pinene(12.85%), 3-carene, ${\beta}$-cubebene(10.39%), etc. Ligularia fischeri var. spiciformis had 83 volatile aroma compounds such as D-limonene(36.97%), ${\beta}$-cubebene(13.95%), L-${\beta}$-pinene(13.38%), ${\alpha}$-pinene(dextro, 4.76%), caryophylle-ne(3.33%) etc. Conclusively, the commom volatile aroma compounds in Ligularia fischeri and Ligularia fischeri var. spiciformis leaves were D-limonene, ${\alpha}$-pinene, L-${\beta}$-pinene, ${\beta}$-cubebene, Caryophyllene, ${\alpha}$-farnesene, terpinolen. However, the composition and amount of volatile aroma compounds were very different between the two species.

Isolation and Characterization of Lipoxygenase-producing Bacteria for Industrial Applications (산업적 응용을 위한 Lipoxygenase 생산 세균의 분리 및 특성)

  • Kim, Yerin;Park, Gyulim;Kim, Yedam;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.265-274
    • /
    • 2022
  • Lipoxygenase is an enzyme, mainly produced by plants, capable of converting unsaturated fatty acids to fatty acids. It has vast application potential in the food, pharmaceutical and agricultural industries. The aim of this study was to isolate novel lipoxygenase-producing bacteria from the environment and to investigate the lipoxygenase enzymatic properties for industrial production. The strain, NC1, isolated from cultivation soils, was identified as Bacillus subtilis based on the phenotypic characteristics and 16S rRNA gene sequencing. This strain formed a pink color around the colony when cultured on indamine dye formation plates. The production of lipoxygenase by B. subtilis NC1 was influenced by the composition of the medium and linoleic acid concentrations. The optimum temperature and pH for lipoxygenase activity was determined to be 40 ℃ and pH 6, respectively. The enzyme showed relatively high stability at temperatures ranging from 20-50 ℃ and acid-neutral regions. In addition, the lipoxygenase produced by B. subtilis NC1 was able to degrade commercially available oils including sunflower seed oil and Perilla oil. In this study, a useful indigenous bacterium was isolated, and the fundamental physicochemical data of bacterial lipoxygenase giving it industrial potential are presented.

Study on the Correlation between Quality of Cement and Amount of Alternative Fuels used in Clinker Sintering Process (시멘트 클링커 소성공정 대체연료 사용량과 시멘트 품질간 상관관계 연구)

  • Choi, Jaewon;Koo, Kyung-Mo;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, the correlation between cement quality(chemical composition, mineral composition, and compressive strength) and amount of waste alternative fuels used in the cement manufacturing process and was investigated. Cement manufacturing facility using coal, soft plastics(plastics that are easily scattered by wind power, such as vinyls), hard plastics(plastics that do not contain foreign substances, waste rubber, PP, etc.) and reclaimed oil was analised. Data was collected for 3 years from 2017 to 2019 and let the amount of fuels used as an independent variable and cement quality data as a dependent variable. As a result, depending on the type and quality of the alternative fuel has not a significant effect on the chemical composition(Cl and LSF) and mineral composition(f-CaO, C3S contents). Contrary to the concern that the compressive strength of cement would decrease, there was a significant positive correlation between amount of alternative fuel used and cement compressive strength.

Variation of Protein Content and Amino Acid Composition in Perilla Germplasm (들깨 유전자원의 단백질함량과 아미노산조성)

  • Lee, Jung-Il;Bang, Jin-Ki;Lee, Bong-Ho;Kim, Kwnag-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.5
    • /
    • pp.449-463
    • /
    • 1990
  • To obtain the basic informations on quality improvement, seed protein and amino acid composition were analyzed in 460 strains of perilla germplasm. Among the tested strains, total protein content ranged from 17.9% to 28.1 % with the 23.6% of varietal means. Form the experiment, Namji, Sandong, and Eunjin were selected as high protein strains of which content was as high as 28.1%. In protein content, collected strains from Jeonnam province showed highest, and was not significantly different by maturity, but this characteristics showed differences by seed coat color and 1,000 seed weight. The significantly negative correlation was observed between protein content and seed setting ratio. However it was observed that significant and high positive correlation between protein and oil content. A calibration for an Infra-Alyzer 450 using log reflectance readings at 2208, 1982, 1940 and 1722nm could be used without adjustment for the measurment of the protein content in perilla with a standard deviation of differences against micro-kjeldahl of 0.27%. The amino acid composition of perilla was similar to the other oilseed crops, and showed a relatively high lysine and methionine content. Further, amino acid composition of perilla seed was exellently characterized with bal ance and higher than FAO recommendation. Major amino acids were indentified as a glutamic acid and arginine in perilla seed protein.

  • PDF

The Effect of Environmental Factors on the Hydrolysis Characteristics of Lipase (환경인자가 리파제의 가수분해 특성에 미치는 영향)

  • Park, Geon-Gyu;Kim, Eun-Gi;Heo, Byeong-Gi
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.511-516
    • /
    • 1999
  • The effects of environmental and compositon factors, such as reaction time, metal ions, pH, agitation speed, the weight ratio of water to oil, and the weight of enzyme, on the hydrolysis of oils by Lipase-OF were investigated. In case of oils with low melting point, the optimum temperature of hydrolysis were the enzyme activity was maximum was 37$^{\circ}C$. However, when the melting temperature was higher than 4$0^{\circ}C$, the optimum temperature was around the fusion temperature. The activity of Lipase-OF decreased very rapidly with increase of temperature in the range of higher than 45$^{\circ}C$ and the activity perished above $65^{\circ}C$. The effect of agitation speed was investigated from 150 to 650 rpm. The hydrolysis of oils increased as the agitation speed increased up to 350 rpm, but it did not increase any more above 350 rpm. The weight ratio of water to oil was changed from 1 : 9 to 9 : 1 for the investigation of the effect on the hydrolusis. The weight ratio for maximum hydrolysis was 1 : 1. $Ca^{2+}\;and\;Mg^{2+}$ among various metal ions had some effect on the stimulation of hydrolysis. The optimum concentration of the ions was about 100ppm at which the hydrolysis increased, compared with that of distilled water, by 2 to 3%. The Optimum pH of Lipase-OF was 7. The hydrolysis decreased as the pH decreased as the pH decreased and also decreased as the pH increased. The content of enzyme affected the hydrolysis of oil. The hydrolysis increased with the content of Lipase-OF in the range of less than 0.013 wt% of substrate. However, the increase of hydrolysis with the content of Lipase-OF ceased above 0.013 wt%. The experiments investigating the effect of environmental and composition factors on the hydrolysis of oils showed that the optimum temperature was 37$^{\circ}C$, the pH 7, the concentration of $Ca^{2+}\;or\;Mg^{2+}$ 100 ppm, the agitation speed 350 rpm, the weight ratio of water to oil 1 : 1, and the content of Lipase-OF 0.013 wt% of substrate.

  • PDF

Method for Supplementing Lecithin to Ginseng Extract (레시틴이 강화된 인삼 추출물 제조 방법)

  • Park, Soon-Hye;Kim, Il-Woong;Kim, Dong-Man;Kim, Si-Kwan
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1245-1250
    • /
    • 2006
  • This study was carried out to develop the method of preparing lecithin-fortified ginseng extract. Firstly, soybean lecithin was mixed with soybean oil (LCS) in varying ratio (2.5%, 5%, 10% and 20%). Then, one part volume of LCS was mixed with three parts volume of ginseng extract with 10% solid matter content and the mixture was vortexed vigorously. Finally, the mixture was spinned at the speed of 3,000 rpm for 30 minutes to separate oil and aqueous ginseng extract layer (AG). AG was then subjected to qualitative and quantitative analysis of phospholipids and ginsenosides. Fatty acid composition and crude fat content before and after LCS was determined. Stability of lecithin in ginseng extract was determined by analyzing phospholipid content in the one third upper and lower layer of the concentrated AG in Falcon tubes while storing the LCS treated concentrated AG in 4, 25 and 40oC for 6 months. Ratio of lecithin transferred to AG increased with the increase in lecithin content of soybean oil. There was no significant change in fatty acid composition and crude fat content, and ginsenoside content in the ginseng extract before and after LCS treatment. TLC and HPLC pattern of saponin fraction before and after treating the ginseng extract with LCS demonstrated no observable difference. There was no change in lecithin content in the upper and lower one third layer of ginseng extract in the tubes after storing the concentrated AG in 4, 25 and $40^{\circ}C$ for 6 months. Ginsenosides HPLC pattern was not changed when stored the LCS-treated ginseng extract in those conditions for six months, indicating satisfiable stability of the LCS-treated concentrated ginseng extract. From these results, it can be concluded that treatment of the ginseng extract with lecithin containing soybean oil is a labor effective method with satisfiable stability to fortify lecithins to ginseng extract.