The Effect of Environmental Factors on the Hydrolysis Characteristics of Lipase

환경인자가 리파제의 가수분해 특성에 미치는 영향

  • Published : 1999.08.01

Abstract

The effects of environmental and compositon factors, such as reaction time, metal ions, pH, agitation speed, the weight ratio of water to oil, and the weight of enzyme, on the hydrolysis of oils by Lipase-OF were investigated. In case of oils with low melting point, the optimum temperature of hydrolysis were the enzyme activity was maximum was 37$^{\circ}C$. However, when the melting temperature was higher than 4$0^{\circ}C$, the optimum temperature was around the fusion temperature. The activity of Lipase-OF decreased very rapidly with increase of temperature in the range of higher than 45$^{\circ}C$ and the activity perished above $65^{\circ}C$. The effect of agitation speed was investigated from 150 to 650 rpm. The hydrolysis of oils increased as the agitation speed increased up to 350 rpm, but it did not increase any more above 350 rpm. The weight ratio of water to oil was changed from 1 : 9 to 9 : 1 for the investigation of the effect on the hydrolusis. The weight ratio for maximum hydrolysis was 1 : 1. $Ca^{2+}\;and\;Mg^{2+}$ among various metal ions had some effect on the stimulation of hydrolysis. The optimum concentration of the ions was about 100ppm at which the hydrolysis increased, compared with that of distilled water, by 2 to 3%. The Optimum pH of Lipase-OF was 7. The hydrolysis decreased as the pH decreased as the pH decreased and also decreased as the pH increased. The content of enzyme affected the hydrolysis of oil. The hydrolysis increased with the content of Lipase-OF in the range of less than 0.013 wt% of substrate. However, the increase of hydrolysis with the content of Lipase-OF ceased above 0.013 wt%. The experiments investigating the effect of environmental and composition factors on the hydrolysis of oils showed that the optimum temperature was 37$^{\circ}C$, the pH 7, the concentration of $Ca^{2+}\;or\;Mg^{2+}$ 100 ppm, the agitation speed 350 rpm, the weight ratio of water to oil 1 : 1, and the content of Lipase-OF 0.013 wt% of substrate.

유지의 가수분해시, 반응온도, 금속이온, pH, 교반속도, 물-유지의 무게비 및 효소량 등의 환경 및 조성인자가 효소 Lipase-OF의 역가 및 가수분해특성에 미치는 영향을 규명하였다. 융점이 낮은 유지의 경우 Lipase-OF의 활성이 가장 높은 온도는 37$^{\circ}C$ 근방이었으나 융점이 4$0^{\circ}C$ 이상의 온도 범위에서는 유지의 종류에 관계없이 온도가 상승하면 Lipase-OF의 활성이 급격히 감소하여 $65^{\circ}C$ 이상에서는 효소의 활성이 정지되었다. 교반속도를 150, 250, 350, 450, 550 및 650 rmp으로 변화시켜가면서 유지의 가수분해실험을 수행하여 350 rpm 이하에서는 교반속도가 상승하면 가수분해율도 상승하였으나 교반속도 350 rpm 이상에서는 교반속도 상승에 대한 가수분해율의 변화를 찾아볼 수 없었다. 유지와 물의 무게비를 9 : 1에서 1 : 9까지 변화시켜가면서 가수분해실험을 수행하여 일정한 가수분해 시간에서 가수분해율이 가장 높은 무게비가 1 : 1 근방의 값임을 규명하였다. 금속 이온 중 $Ca^{2+}와\;Mg^{2+}$ 이온이 가수분해율 상승에 기여하였다. 금속이온이 없는 경우에 비하여 $Ca^{2+}$또는 $Mg^{2+}$ 이온 농도가 100 ppm 근방의 값일 때 2 내지 3%의 가수분해율 증가효과를 나타내었다. Lipase-OF에 대한 최적 pH는 7근방이었다. pH가 산성쪽으로 감소하면 가수분해율도 감소하였으며 알칼리쪽으로 증가하여도 가수분해율이 감소하였다. 기질의 0.00075 wt% 와 0.1 wt% 범위내에서 Lipase-OF량이 가수분해율에 미치는 영향을 규명하였다. 효소량 0.013 wt% 이하에서는 효소량이 증가하면 가수분해율도 증가하였으나 0.013 wt% 이상에서는 효소량이 증가하여도 가수분해율은 증가하지 않았다. Lipase-OF의 가수분해율에 미치는 환경 및 조성인자의 영향에 대한 실험을 통하여 최적온도는 37$^{\circ}C$, 최적 pH는 7, $Ca^{2+}\;또는\;Mg^{2+}$의 최적농도는 100 ppm, 최적교반속도는 350 rpm, 유지와 물의 최적무게비는 1 : 1 및 최적 효소량은 유지의 0.013 wt%임을 규명하였다.

Keywords

References

  1. J. Am. Oil Chem. Soc. v.69 Kinetics of Continuous Hydrolysis of Tallow in a Multi-Layered Flat-Plate Immobilized-Lipase Reactor Taylor, F.;M. J. Kurantz;J. C. Craig, Jr.
  2. J. Am. Oil Chem. Soc. v.65 Enzymatic fat splitting Linfield, W. M.
  3. J. Am. Oil Chem. Soc. v.65 Hydrolysis of Soybean Oil by a Combined Lipase System Park, Y. K.;G. M. Pastone;M. Mitui de Almeida
  4. J. Am. Oil Chem. Soc. v.71 Lipase Made Active in Hydrophobic Media by Coupling with Polyethylene Glycol Kodera, Y.;H. Nishumura;A. Matsushima;M. Hiroto;Y. Inada
  5. 油脂 v.43 岩井美技子
  6. 日本特許公報 昭 46-16509 油脂の分解方法 各糖産業(株)
  7. 日本特許公報 昭 46-28039 油脂分解酵素による 固體脂肪の分解方法 各糖産業(株)
  8. 日本特許公報 昭 57-57799 脂肪の加水分解方法 日本油脂(株)
  9. J. Am. Oil Chem. Soc. v.65 Characteristics of an Immobilized Lipase for the Commercial Synthesis of Esters Miller, C.;H. Austin;L. Posorske;J. Gonzlez
  10. J. Am. Oil Chem. Soc. v.65 Enzyme Preparation of Monoglycerides Microemulsions Holmberg, K.;E. Osterberg
  11. J. Am. Oil Chem. Soc. v.69 Enzymatic Fatty Esters Synthesis Pecnik, S.;Z. Knez
  12. J. Jpn. oil chem. soc. v.35 Glycerolysis of Fat by Lipase Yamane, T.;M. Mozammel. Hoq.;I. Sumiyo;S. Shoichi.
  13. Kor. J. Appl. Microbiol. v.19 효소에 의한 우지의 가수분해반응 김인호;박태현
  14. Enzyme Microb. Technol. v.16 Pseudomonas Fluorescence Lipase Adsorption and Kinetics of Hydrolysis in a Dynamic Emulsion System J. G. T. Kierkels;L. F. W. Vleugels
  15. Enzyme Microb. Technol. v.19 Influence of the Organic Solvents on the Activity in Water and the Conformation of Candida Rugosa Lipase : Descreption of a Lipase-Activating Pretreatment Torres, C.;C. Otero
  16. Biochim. Biophys. Acta v.40 The Relation of Metals and -SH Groups to the Activity of Pancreatic Lipase Wills, E. D. L.
  17. 실험생화학(5th ed.) 한국 생화학회 교재편찬위원회