• Title/Summary/Keyword: offset compensation

Search Result 214, Processing Time 0.034 seconds

The study of a chopper-type transistorized d.c. amplifier circuit (교류변환형 트란지스터식 직류증폭회로에 관한 연구)

  • 한만춘;최창준
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 1969
  • The sensitivity of transistorized d.c. amplifiers is mainly limited by drift at operating point caused by ambient temperature changes. A chopper-type transistorized amplifier is necessary to obtain a high sensitivity without recourse to drift compensation which requires the adjustment of several balancing controls. A chopper-stabilized system consisting of an electro-mechanical chopper for input and output and a high-gain a.c. amplifier is designed and analyzed. The gain of the a.c. amplifier, expressed as the ratio of voltages, is larger than 80db in the band of 50C/S - 100KC/S. The complete system gives an open-loop gain of 68db at direct current. The offset voltage is 20.mu.V referred in input and the voltage drift at the input is less than 10.mu.V/hr at 25.deg.C. This type of amplifier would be useful for the high-gain transistorized d.c. amplifier for analog computers. Also, due to the high input impedance, it is suitable for amplification of signals from wide range of source impedances.

  • PDF

Compensation Method of Position Signal Error with Misaligned Hall-Effect Sensors of BLDC Motor

  • Park, Joon Sung;Choi, Jun-Hyuk;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.889-897
    • /
    • 2016
  • This paper presents an improved approach for compensating rotor position signal displacement in brushless DC (BLDC) motors with misaligned hall-effect sensors. Typically, the hall-effect sensors in BLDC motors are located in each phase and positioned exactly 120 electrical degrees apart. However, limitations in mechanical tolerances make it difficult to place hall-effect sensors at the correct location. In this paper, a position error compensator to counteract the hall-effect sensor positioning error is proposed. The proposed position error compensator uses least squares error analysis to adjust the relative position error and back-EMF information to reduce the absolute offset error. The effectiveness of the proposed approach is verified through several experiments.

A Study on Similitude Law for Evaluation of Seismic Performance (내진성능평가를 위한 상사법칙에 관한 연구)

  • Kim, Nam-Sik;Kwak, Young-Hak;Chang, Sung-Pil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.208-215
    • /
    • 2003
  • 지진하중에 대한 구조물의 동적 거동과 성능을 예측 평가하기 위하여 실험적 방법들이 흔히 사용되고 있으나, 실험장비의 제약과 구조물의 규모 등으로 대부분 축소모형실험에 의존하고 있다. 그러나 일반적인 상사법칙(similitude law)은 탄성범위에서 유도된 것으로 지진거동과 같은 비탄성 거동을 예측하는 경우에는 한계가 있다. 또한 탄성범위 내에서도 크기효과(size offset)가 발생하므로 축소모형의 실험결과를 원형 구조물에 직접 적용하는 것은 많은주의가 필요하다. 본 연구에서는 원형 구조물(prototype)과 축소모형(scaled model)을 모두 실험 대상으로 하여 실제 축소모형만을 실험하여 원형 구조물의 거동을 예측하는 경우의 문제점을 확인하고 그 해결방법을 모색하고자 한다. 실제로 축소모형실험에서는 원형 구조물의 경계조건을 정확히 재현하기 어려우며, 실험모형의 제작과정과 실험과정에서의 모든오차가강성의 변화로 반영되어 나타난다. 따라서 본 연구에서는 기하학적 상사율과 변화된 강성비(stiffness ratio)를 함께 고려하여 고유진동수의 오차를 보정하고 비탄성 거동중에도 직접적인 실험결과의 비교가 가능한 상사법칙을 제안하였다. 더불어 제안된 상사법칙을 적용한 유사동적실험 (pseudodynamic test)을 수행하여 실험오차보정(experimental error compensation)효과를 검증하였다.

  • PDF

A Coherent-based Symbol Detector for 2.45GHz LR-WPAN Receiver (2.45GHz LR-WPAN 수신기를 위한 Coherent 기반의 Symbol Detector)

  • Han Jung-Su;Do Joo-Hyun;Park Tha-Joon;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2A
    • /
    • pp.176-186
    • /
    • 2006
  • In this paper, we propose an enhanced symbol detector algorithm for 2.45GHz LR-WPAN(Low-Rate Wireless Personal Area Network) receiver. Because the frequency offset of $\pm$80ppm on 2.45GHz band is recommended in IEEE 802.15.4 LR-WPAN(Low-Rate Wireless Personal Area Network) specification, a symbol detector algorithm having stable operation in the channel environment with large frequency offset is required. For robustness to the frequency offset, non-coherent detection-based symbol detector algorithm is typically applied in the LR-WPAN receiver modem. However, the noncoherent symbol detector has increased performance degradation and hardware complexity due to squaring loss of I/Q squaring operation. Therefore we propose a coherent detection-based symbol detector algorithm with frequency offset compensation using a preamble symbol. The proposed algorithm is more suitable for LR-WPAN receiver aimed at low-cost, low-power and low-complexity than the non-coherent symbol detector, since it can reduce performance degradation due to squaring loss of I/Q squaring operation and implementation complexity. Simulation results show that the proposed algorithm has performance improvement of about 1dB in various channel environments.

Development of Autonomous Combine Using DGPS and Machine Vision (DGPS와 기계시각을 이용한 자율주행 콤바인의 개발)

  • Cho, S. I.;Park, Y. S.;Choi, C. H.;Hwang, H.;Kim, M. L.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • A navigation system was developed for autonomous guidance of a combine. It consisted of a DGPS, a machine vision system, a gyro sensor and an ultrasonic sensor. For an autonomous operation of the combine, target points were determined at first. Secondly, heading angle and offset were calculated by comparing current positions obtained from the DGPS with the target points. Thirdly, the fuzzy controller decided steering angle by the fuzzy inference that took 3 inputs of heading angle, offset and distance to the bank around the rice field. Finally, the hydraulic system was actuated for the combine steering. In the case of the misbehavior of the DGPS, the machine vision system found the desired travel path. In this way, the combine traveled straight paths to the traget point and then turned to the next target point. The gyro sensor was used to check the turning angle. The autonomous combine traveled within 31.11cm deviation(RMS) on the straight paths and harvested up to 96% of the whole rice field. The field experiments proved a possibility of autonomous harvesting. Improvement of the DGPS accuracy should be studied further by compensation variations of combines attitude due to unevenness of the rice field.

  • PDF

A Design of Frequency Synthesizer for T-DMB and Mobile-DTV Applications (T-DMB 및 mobile-DTV 응용을 위한 주파수 합성기의 설계)

  • Moon, Je-Cheol;Moon, Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • A Frequency synthesizer for T-DMB and mobile-DTV applications was designed using $0.18{\mu}m$ CMOS process with 1.8V supply. PMOS transistors were chosen for VCO core to reduce phase noise. The VCO range is 920MHz-2100MHz using switchable inductors, capacitors and varactors. Varactor biases that improve varactor acitance characteristics were minimized as two, and $K_{VCO}$(VCO gain) value was aintained by switchable varactor. Additionally, VCO was designed that VCO gain and the interval of VCO gain were maintained using VCO gain compensation logic. VCO, PFD, CP and LF were verified by Cadence Spectre, and divider was simulated using Matlab Simulink, ModelSim and HSPICE. VCO consumes 10mW power, and is 56.3% tuning range. VCO phase noise is -127dBc/Hz at 1MHz offset for 1.58GHz output frequency. Total power consumption of the frequency synthesizer is 18mW, and lock time is about $140{\mu}s$.

The Scheme for Improving the Performance of Ranging Code Detection over OFDMA Systems in Uplink (OFDMA 시스템 상향링크의 레인징 부호 검출 성능 향상 기법)

  • Kim Ki-Nam;Kim Jin-Ho;Cho Sung-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6A
    • /
    • pp.575-585
    • /
    • 2006
  • In Orthogonal Frequency Division Multiple Access (OFDMA) systems, timing synchronization in uplink is accomplished by an initial uplink synchronization called an initial ranging process. The Base Station's receiver synchronizes the symbol timing to specific user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol. The Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we propose an initial ranging symbol structure with common ranging code for phase shift estimation and compensation. We car estimate the average of phase shift that is generated by each user's STO and compensate this phase shift by using common ranging code. This scheme will suppress the MAI and provide better detection performance than conventional process.

Integral C-V Converter for a Fully Differential Capacitive Pressure Sensor (완전차동용량형 압력센서를 위한 적분형 C-V 변환기)

  • Lee, Dae-Sung;Kim, Kyu-Chull;Park, Hyo-Derk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.9
    • /
    • pp.62-71
    • /
    • 2002
  • An intergral C-V converter is proposed to solve the nonlinearity problem of capacitive pressure sensors. The integral C-V converter consists of a switched-capacitor integrator and a switched-capacitor differential amplifier. It converts the sensor capacitance change which is inversely proportional to an applied pressure into a linear voltage output. Various PSPICE simulations prove that the convertor has excellent characteristics, such as low nonlinearity less than 0.01%/FS and low sensitivity to parallel offset capacitance and parasitic capacitance for the displacement range of sensor diaphragm set to 0 ${\sim}$ 90% of the initial distance between the electrodes in the simulation. We also show that the offset compensation and the gain trimming are easily achieved with the integral C-V converter.

Baseband Receiver Design for Maritime VHF Digital Communications (해양 VHF 디지털 통신을 위한 기저대역 수신기 설계)

  • Kim, Seung-Geun;Yun, Chang-Ho;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1012-1020
    • /
    • 2011
  • In this paper a design of $\pi$/4-DQPSK baseband receiver for the exchange of digital data and e-mail between shore and ship stations and/or among ship stations in the maritime mobile service VHF channels is described. Due to the permitted relatively big frequency instability of local oscillators at the transmitter and the receiver of maritime communication system, the designed baseband receiver should have the capabilities of correct estimation and compensation of the synchronization parameters, such as symbol timing and frequency offset, from the received signal which might include relatively big frequency error. Simulated BER results show that the designed baseband receiver works less than 0.5dB loss under AWGN channel when the normalized frequency offset of the received signal is more then 20%.

Effective Compensation of Distorted WDM Signals Related with Frequency Chirp (주파수 �V이 다른 WDM 신호의 효율적 왜곡 보상)

  • Lee, Seong-Real;Yim, Hwang-Bin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.394-400
    • /
    • 2007
  • We induced the optimal values of optical phase conjugator (OPC) position and dispersion coefficients of fiber sections depending on frequency chirp, which is substantially generated in optical signal by optical modulator and affects the transmission performances. In order to investigate the relation of optimal parameters with various frequency chirp, in this paper, positive(down) chirp, chirp-free and positive(up) chirp are assumed in 40 Gbps ${\times}$ 16 channels WDM transmission system of NRZ format with extinction ratio of 10 dB, which are the worst system parameters in the factor affecting system performance. It is confirmed that the OPC position offset and dispersion offsets between both fiber sections are more increased as frequency chirp become larger. It is also confirmed that the effect of the induced values on the compensation of WDM channels with negative frequency chirp is better than WDM channels with positive frequency chirp.

  • PDF