• Title/Summary/Keyword: octadecyltrichlorosilane(OTS)

Search Result 43, Processing Time 0.026 seconds

Octadecyltrichlorosilane Self-Assembled Monolayers에 따른 FTIR 분석

  • Kim, Jong-Uk;Kim, Heung-Bae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.43-46
    • /
    • 2007
  • 기존 사용되어온 절연막의 $SiO_2$의 절연특성이 신호의 간섭 등의 문제가 있어서 절연특성을 좋게 하기 위해 낮은 유전상수와 비결정질의 절연막을 요구하고 있다. 본 연구에서는 OTS를 이용하여 액상 상태에서 SAMs를 형성하였으며 FTIR을 이용한 결합구조의 변화를 살펴보았다. OTS 유기물의 함량을 0.1%에서부터 0.9%까지 다르게 혼합하여 희석시킨 유기화합물 용액에 따른 $650\;cm^{-1}$에서 $4000\;cm^{-1}$까지 전구간에 대한 FTIR 스펙트라를 보았다.

  • PDF

Additive Fabrication of Patterned Multi-Layered Thin Films of Ta2O5 and CdS on ITO Using Microcontact Printing Technique

  • Lee, Jong-Hyeon;Woo, Soo-Yeun;Kwon, Young-Uk;Jung, Duk-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.183-188
    • /
    • 2003
  • The micro-patterning of multi-layered thin films containing CdS and $Ta_2O_5$ layers on ITO substrate with various structures was successfully obtained by combining three different techniques: chemical solution depositions, sol-gel, and microcontact printing (μCP) methods using octadecyltrichlorosilane (OTS) as the organic thin layer template. $Ta_2O_5$ layer was prepared by sol-gel casting and CdS one obtained by chemical solution deposition, respectively. Parallel and cross patterns of multi-layers with $Ta_2O_5$ and CdS films were fabricated additively by successive removal of OTS layer pre-formed. This study presents the designed architectures consisting of the two types of feature having horizontal dimensions of 170 ㎛ and 340 ㎛ with constant thickness ca. 150 nm of each deposited materials. The thin film lay-out of the cross-patterning is composed of four regions with chemically different layer compositions, which are confirmed by Auger electron microanalysis.

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF

A STUDY ON THE ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS WITH SURFACE-TREATED GATE DIELECTRIC LAYER (표면 처리한 $SiO_2$를 게이트 절연막으로 하는 박막 트랜지스터의 특성 연구)

  • Lee, Jae-Hyuk;Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun;Kim, Eu-Gene
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.455-457
    • /
    • 2000
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces, where the gate dielectrics were treated by the two methods which are the deposition of Octadecyltrichlorosilane (OTS) on the insulator and rubbing the insulator surface. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-7}$ Torr and at a deposition rate of $0.3{\AA}/sec$. Aluminum and gold were used for the gate and source/drain electrodes. OTS is used as a self-alignment layer between $SiO_2$ and pentacene. The gate dielectric surface was rubbed before pentacene is deposited on the insulator. In order to confirm the changes of the surface morphology the atomic force microscopy (AFM) was utilized. The characteristics of the fabricated TFTs are measured to clarify the effects of the surface treatment.

  • PDF

Dielectric Surface Treatment Effects on Organic Thin-film Transistors (유기반도체 트랜지스터의 유전체 표면처리 효과)

  • Lim Sang Chul;Kim Seong Hyun;Lee Jung Hun;Ku Chan Hoe;Kim Dojin;Zyung Taehyong
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • The surface states of gate dielectrics affect device performance severely in Pentacene OTFTs. We have fabricated organic thin-film transistors (OTFTs) using pentacene as an active layer with chemically modified $SiO_2$ gate dielectrics. The effects of the surface treatment of $SiO_2$ on the electric characteristics of OTFTS were investigated. The surface of $SiO_2$ gate dielectric was treated by normal wet cleaning process, $O_2-plasma$ treatment, hexamethyldisilazane (HMDS), and octadecyltrichlorosilane (OTS) treatment. After the surface treatments, the contact angles and surface free energies were measured in order to analyze the surface state changes. In the electrical measurements, typical I-V characteristics of TFTs were observed. The field effect mobility, $\mu$, was calculated to be $0.29\;cm^2V^{-1}s^{-1}$ for OTS treated sample while those for the HMDS, $O_2$ plasma treated, and wet-cleaned samples were 0.16, 0.1, and $0.04\;cm^2V^{-1}s^{-1}$, respectively.

A Study on Tribological Characteristics of Materials for MEMS/NEMS Using Chemically Modified AFM tip (AFM을 이용한 MEMS/NEMS 공정용 재료의 트라이볼로지 특성에 관한 연구)

  • Heo, Jung-Chul;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2008
  • Friction and adhesion tests were conducted to investigate tribological characteristics of materials for MEMS/NEMS using atomic force microscope (AFM). AFM Si tips were chemically modified with a self-assembled monolayer (SAM) derived from trichlorosilane like octadecyltrichlorosilane (OTS) and (1H, 1H, 2H, 2H-perfluorooctyl) trichlorosilane (FOTS), and various materials, such as Si, Al, Au, Cu, Ti and PMMA films, were prepared for the tests. SAMs were coated on Si wafer by dipping method prior to AFM tip to determine a proper dipping time. The proper dipping time was determined from the measurements of contact angle, surface energy and thickness of the SAMs. AFM tips were then coated with SAMs by using the same coating condition. Friction and adhesion forces between the AFM Si tip modified with SAM and MEMS/NEMS materials were measured. These forces were compared to those when AFM tip was uncoated. According to the results, after coating OTS and FOTS, the friction and adhesion forces on all materials used in the tests decreased; however, the effect of SAM on the reduction of friction and adhesion forces could be changed according to counterpart materials. OTS was the most effective to reduce the friction and adhesion forces when counterpart material was Cu film. In case of FOTS, friction and adhesion forces decreased the most effectively on Au films.

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Photocurrent of CdSe nanocrystals on singlewalled carbon nanotube-field effect transistor

  • Jeong, Seung-Yol;Lim, Seung-Chu;Lee, Young-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.40-40
    • /
    • 2010
  • CdSe nanocrystals (NCs) have been decorated on singlewalled carbon nanotubes (SWCNTs) by combining a method of chemically modified substrate along with gate-bias control. CdSe/ZnS core/shell quantum dots were negatively charged by adding mercaptoacetic acid (MAA). The silicon oxide substrate was decorated by octadecyltrichlorosilane (OTS) and converted to hydrophobic surface. The negatively charged CdSe NCs were adsorbed on the SWCNT surface by applying the negative gate bias. The selective adsorption of CdSe quantum dots on SWCNTs was confirmed by confocal laser scanning microscope. The measured photocurrent clearly demonstrates that CdSe NCs decorated SWCNT can be used for photodetector and solar cell that are operable over a wide range of wavelengths.

  • PDF

UV/ozone Cleaning Processes for Organic Films on Si Studied by in-line XPS and AFM (in-line XPS와 AFM을 이용한 유기물의 UV/ozone 건식세정과정 연구)

  • 이경우;황병철;손동수;천희곤;김경중;문대원;안강호
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.261-269
    • /
    • 1995
  • 본 실험에서는 실리콘 웨이퍼 위에 photoresist(PR)와 octadecyltrichlorosilane(OST, CH3((CH2)17SiCI3)를 입혀서 UV/zone 처리를 어떻게 유기물질들이 UV/zone과 반응하여, 어떻게 표면에서 제거되는지를 in-line으로 연결된 XPS로 분석하고 반응시킨 표면들의 거칠기(roughness)를 AFM을 이용하여 관찰하였다. 실험결과 상온에서 UV/zone 처리를 했을 경우, PR과 OTS같은 유기물질이 표면에서 산화되는 것을 알 수 있었으나 이들이 제거되지 않고 표면에 그대로 남아있음을 알 수 있었다. 그러나 가열하면서(PR:$250^{\circ}C$, ORS:$100^{\circ}C$)UV/ozone 처리를 하였을 경우 표면에서 산화됨과 동시에 이들 산화물들이 표면에서 제거됨을 알 수 있었다. XPS 분석으로부터 이들의 산화반응물은 PR과 OTS 모두 -CH2-, -CH2O-, =C=O, -COO-를 가지는 것으로 나타났으며, 열에너지에 의해서 이들이 표면에서 제거되는 것으로 나타났다. AFM 분석결과는 상온에서 UV/ozone 처리를 하였을 경우에 표면의 거칠기가 적은 반면, 가열하면서 UV/o-zone처리를 하였을 경우에는 표면의 거칠기가 다소 증가하였다.

  • PDF

Effect of self-assembled monolayer and aluminum oxide ALD film on a PMMA substrate

  • Shin, Sora;Park, Jongwan
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.525-529
    • /
    • 2018
  • The antireflective (AR) coated poly methyl methacrylate (PMMA) substrate was deposited by atomic layer deposition (ALD) on a self-assembled monolayer (SAM) to improve hydrophobicity and mechano-chemical properties of organic thin films. The water contact angles (WCA) were tested to characterize the surface wettability of SAM octadecyltrichlorosilane (OTS) films. Results showed that a contact angle of $105.9^{\circ}$ was obtained for the SAM films with an annealing process, and the highest WCA of $120^{\circ}$ was achieved for the films prepared by the SAM and ALD multi-process. The surface morphology of the SAM films with different assembly times and varying number of ALD cycles was obtained by atomic force microscopy (AFM). The maximum light transmittance for the SAM films on the PMMA substrate reached 99.9% at a wavelength of 450 nm. It was found that the SAM surfaces were not affected at all by the ALD process.