• Title/Summary/Keyword: ocean tides

Search Result 206, Processing Time 0.017 seconds

Modelling of Tides in the East Asian Marginal Seas (동아시아 해역의 조석 모형)

  • 최병호;고진석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.94-108
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with higher precision to maginal seas. it is necessary to improve correction procedures for tidal signals in altimetry with more accurate tidal model than the well-known model of Schwiderski for studying marginal sea dynamics. As a first step, tidal regime of semidiurnal tides (M$_2$, S$_2$, $N_2$, $K_2$) and diurnal tides (K$_1$, $O_1$, P$_1$, Q$_1$) were computed with finer details of formulation of tidal model over the East Asian Marginal Seas covering the Okhotsk Sea and South China Sea and part of Northwest Pacific Ocean with mesh resolutions of 1/6$^{\circ}$. Computed results were discussed with observations, previous tidal charts and Schwiderski's tidal map of the region.

  • PDF

CHARACTERISTICS OF ATMOSPHERIC WAVES OBSERVED FROM AIRGLOW MEASUREMENTS IN THE NORTHERN HIGH-LATITUDE

  • Won, Yong-In;Lee, Bang-Yong;Kwon, Soon-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • The terrestrial nightglow emission in near infrared region were obtained using a Fourier Transform Spectrometer(FTS) at Esrange, Sweden ($67.90^{\circ}$N, $21.10^{\circ}$E) and the OH(4- 2) bands were used to derive temperature and airglow emission rate of the upper mesosphere. For this study, we analyzed data taken during winter of 2001/2002 and performed spectral analysis to retrieve wave information. From the Lomb-Scargle spectral analysis to the measured temperatures, dominant oscillations at various periods near tidal frequency are found. Most commonly observed waves are 4, 6, and 8 hour oscillations. Because of periods and persistence, the observed oscillations are most likely of tidal origin, i.e. zonally symmetric tides which are known to have their maximum amplitudes at the pole.

Sea Level Change due to Nonlinear Tides in Coastal Region (연안해역에서 비선형 조석으로 인한 해수면 변화)

  • Jung, Tae Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.228-238
    • /
    • 2017
  • In coastal region, tidal harmonic constants of semi-diurnal tides and nonlinear tides were collected. The observed tide data of KHOA were analyzed by a tide harmonic analysis method. In the southwestern coasts and Han river estuary, nonlinear tides are clearly generated. The generation of tide non-linearity and tide asymmetry is closely related with tide form factor in Korean coastal zone. Tide non-linearity and asymmetry in Mokpo harbour have increased by a series of coastal development projects. The increase has caused rise of high water level and drop of low water level, and increase of tidal range. In Kunsan Outport, tidal range has been declined due to inter-annual change of nonlinear tides after completion of Samangeum sea-dyke.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors

  • Jeong, Hae Jin;Lim, An Suk;Lee, Kitack;Lee, Moo Joon;Seong, Kyeong Ah;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Lee, Sung Yeon;Kim, Mi Ok;Kim, Ji Hye;Kwon, Ji Eun;Kang, Hee Chang;Kim, Jae Seong;Yih, Wonho;Shin, Kyoungsoon;Jang, Poong Kook;Ryu, Joo-Hyung;Kim, Sung Young;Park, Jae Yeon;Kim, Kwang Young
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.101-130
    • /
    • 2017
  • The ichthyotoxic Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in the waters of Korea and other countries. Predicting outbreak of C. polykrikoides red tides 1-2 weeks in advance is a critical step in minimizing losses. In the South Sea of Korea, large C. polykrikoides red tide patches have often been recorded offshore and transported to nearshore waters. To explore the processes of offshore C. polykrikoides red tides, temporal variations in 3-dimensional (3-D) distributions of red tide organisms and environmental parameters were investigated by analyzing 4,432 water samples collected from 2-5 depths of 60 stations in the South Sea, Korea 16 times from May to Nov, 2014. In the study area, the vegetative cells of C. polykrikoides were found as early as May 7, but C. polykrikoides red tide patches were observed from Aug 21 until Oct 9. Cochlodinium red tides occurred in both inner and outer stations. Prior to the occurrence of large C. polykrikoides red tides, the phototrophic dinoflagellates Prorocentrum donghaiense (Jun 12 to Jul 11), Ceratium furca (Jul 11 to Aug 21), and Alexandrium fraterculus (Aug 21) formed red tides in sequence, and diatom red tides formed 2-3 times without a certain distinct pattern. The temperature for the optimal growth of these four red tide dinoflagellates is known to be similar. Thus, the sequence of the maximum growth rates of P. donghaiense > C. furca > A. fraterculus > C. polykrikoides may be partially responsible for this sequence of red tides in the inner stations following high nutrients input in the surface waters because of heavy rains. Furthermore, Cochlodinium red tides formed and persisted at the outer stations when $NO_3$ concentrations of the surface waters were < $2{\mu}M$ and thermocline depths were >20 m with the retreat of deep cold waters, and the abundance of the competing red-tide species was relatively low. The sequence of the maximum swimming speeds and thus potential reachable depths of C. polykrikoides > A. fraterculus > C. furca > P. donghaiense may be responsible for the large C. polykrikoides red tides after the small blooms of the other dinoflagellates. Thus, C. polykrikoides is likely to outgrow over the competitors at the outer stations by descending to depths >20 m and taking nutrients up from deep cold waters. Thus, to predict the process of Cochlodinium red tides in the study area, temporal variations in 3-D distributions of red tide organisms and environmental parameters showing major nutrient sources, formation and depth of thermoclines, intrusion and retreat of deep cold waters, and the abundance of competing red tide species should be well understood.

A Numerical Tidal Model for the Southeast Asian Seas (南東 아시아 海域의 潮汐 數値 模型)

  • Byung Ho Choi;Duk Gu Kim;Dong Hoon Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 1997
  • The tidal propagation for the Southeast Asian Seas is described via a high-resolution, two-dimensional hydrodynamic model by the equilibrium tide and co-oscillating tide at the Straits. Computed tidal distributions of four major semidiurnal tides (M$_2$, S$_2$, $K_2$, $N_2$) and four major diurnal tides (K$_1$, $O_1$, P$_1$, Q$_1$) are presented and results are also compared with coastal observations archived in IHO global tidal data base (Canadian Marine Environmental Data Service) and existing tidal charts including Schwiderski GOTD(Global Ocean Tidal Data) maps.

  • PDF

Rapid Estimation Method of Tidal Predictions in Namhaedo Area (남해도 해역 조석의 신속 추정법)

  • 최병호;고진석;김동철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.368-378
    • /
    • 1995
  • Using two-dimensional depth-integrated tidal computation model. tidal charts of eight major tidal constituents (M$_2$, S$_2$, $K_2$, $N_2$, $K_1$, $O_1$, P$_1$, Q$_1$) are presented for Namhaedo area. Computed distributions of tides were compared with observations. Subsequently, the model was run for one month to derive harmonic constants of tides and tidal currents, thus for formulating predictive data tables. Data tables are then used as PC-based rapid estimation of tides in this area.

  • PDF

Modelling of Tides in the Bay of Bengal (벵갈만의 조석)

  • 최병호;고진석
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.290-297
    • /
    • 1994
  • As satellite altimetry is being progressed to apply with higher precision to marginal seas, it is necessary to improve correction procedures fer tidal signals in altimetry with more accurate tidal model than the well-known model of Schwiderski. The Bay of Bengal renders many conspicuous coastal oceanographic issues including tide and storm surge interactions along the upper Bangladesh coast. As a first step. tidal regime of semidiurmal tides (M$_2$, S$_2$, $N_2$, $K_2$) and diurnal tides (K$_1$, $O_1$, P$_1$) are computed with a model having a mesh resolution of 1/4 degree over the whole Bay of Bengal. Computed results are discussed with observation and previous Schwideski's tidal map of the region.

  • PDF

The Regional Classification of Tidal Regime using Characteristics of Astronomical Tides, Overtides and Compound Tides in the Han River Estuary, Gyeonggi Bay (천문조, 배조 및 복합조 특성을 이용한 경기만 한강하구 구역별 조석체계 분류)

  • Yoon, Byung Il;Woo, Seung-Buhm;Kim, Jong Wook;Song, Jin Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.149-158
    • /
    • 2015
  • In this study, we investigate tidal wave propagation characteristics, and classify regional tidal regime using tidal form number considered distribution of astronomical tide, overtides, and compound tides in the Han River Estuary, Gyeonggi Bay. The characteristics of the tidal wave propagation in main channels show dominance of major tidal constituents (e.g., $M_2$, $S_2$, $N_2$, $K_1$ and $O_1$) contributing to the astronomical tide however, distinct increasing of shallow water (e.g., $M_4$) and long period (e.g., $MS_f$) components toward up-estuary. Using the characteristics of tidal form number to astronomical tide, overtides, and compound tides, the regional tidal regime could be assorted into three regions. Firstly, a dominance area of astronomical tide was presented from open sea to a front of Incheon Harbor (Yeomha channel) and to north entrance of Seokmo channel. The area between south and north entrance of Yeomha channel and Ganghaw north channel classified into zone of showing strong shallow water components. It could be separated into upper estuary, upstream the Singok underwater dam, showed dominance of shallow overtides (e.g., $M_4$ and $MS_4$) water and long-term compound tides (e.g., $MS_f$) larger magnitude than astronomical tide. The shallow water components was earlier generated in lower part (south entrance) of Yeomha channel have strong bottom by effect of shallower and narrower compared with Seokmo channel. Tidal asymmetries of upper estuary cause by a development of overtides and compound tides are mainly controlled by influence of man-made structure.

Disaster Characteristics Analysis of Busan Coastal Areas by Typhoon Mae-mi (부산 연안지역에서의 태풍 매미 저해특성 분석)

  • SEO KYU WOO;KIM GA YA;LEE IN ROCK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.111-116
    • /
    • 2004
  • We surveyed the coastal structure damages due to the typhoon 'Mae-mi' which heavily struck Korean peninsula in September 12, 2003. The survey revealed the typhoon induced high tides and strong winds were the main causes especially in Busan areas. Though some experimental real time coastal monitoring stations captured the typhoon movements at the critical time, more systematic and complete systems should be implemented to save human lives and properties from huge typhoon disasters.

  • PDF

Tidal Computations for Seohan Bay (서한만의 조석산정)

  • 이종찬;최병호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.121-129
    • /
    • 1992
  • A two-dimensional numerical tidal model is formulated to reproduce tides in the northeastern Yellow-Sea, Seohan Bay. The model was formulated on spherical grid system with mesh resolution of 1' latitude by 4/3' longitude. As a first step, tidal distribution of four major tidal constituents are computed and compared with coastal observation. Independent tidal charts for the M$_2$, S$_2$, $K_1$, and $O_1$ tides were presented. Residual tidal currents and tidal energy flux were also computed.

  • PDF