• Title/Summary/Keyword: ocean data

Search Result 5,066, Processing Time 0.046 seconds

Data Standardization for Research Ocean-Data Management and Standard Proposal of Physical Oceanographic Data (연구사업 해양자료 관리를 위한 표준화와 해양물리자료 표준(안))

  • Kim, Sung-Dae;Choi, Sang-Hwa;Park, Jun-Yong;Pa, Soo-Young
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.249-263
    • /
    • 2015
  • Standardization work for the ocean data produced by a variety of national oceanographic research projects was conducted in order to establish a national ocean data sharing system. For this work, we first prepared standard proposals for the national research ocean data by reviewing and analyzing of existing international and domestic ocean-data standards. The proposed standards were reviewed and revised by experts in the field of oceanography and academic societies for documentation. The 125-page technical report on the standards of 25 data items was prepared as an output of this research work, which is available free of charge for the public and interested parties. This paper explains the proposed standards of metadata and codes regarding the common properties of all the oceanographic data items. Especially, the standards for the metadata, codes and data formats of 4 physical data items were described in detail. In order to be adopted as the national standards for ocean data, however, the standards suggested here require further development and/or modification based on additional reviews of and ample feedbacks from the relevant academic and technical communities.

Introduction of Acquisition System, Processing System and Distributing Service for Geostationary Ocean Color Imager (GOCI) Data (정지궤도 해색탑재체(GOCI) 데이터의 수신.처리 시스템과 배포 서비스)

  • Yang, Chan-Su;Bae, Sang-Soo;Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Han, Tai-Hyun;Yoo, Hong-Rhyong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.263-275
    • /
    • 2010
  • KOSC(Korea Ocean Satellite Center), the primary operational organization for GOCI(Geostationary Ocean Color Imager), was established in KORDI(Korea Ocean Research & Development Institute). For a stable distribution service of GOCI data, various systems were installed at KOSC as follows: GOCI Data Acquisition System, Image Pre-processing System, GOCI Data Processing System, GOCI Data Distribution System, Data Management System, Total Management & Control System and External Data Exchange System. KOSC distributes the GOCI data 8 times to user at 1-hour intervals during the daytime in near-real time according to the distribution policy. Finally, we introduce the KOSC website for users to search, request and download GOCI data.

Introduction of Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO)

  • Kubota, Masahisa
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.231-236
    • /
    • 1999
  • Accurate ocean surface fluxes with high resolution are critical for understanding a mechanism of global climate. However, it is difficult to derive those fluxes by using ocean observation data because the number of ocean observation data is extremely small and the distribution is inhomogeneous. On the other hand. satellite data are characterized by the high density, the high resolution and the homogeneity. Therefore, it can be considered that we obtain accurate ocean surface by using satellite data. Recently we constructed ocean surface data sets mainly using satellite data. The data set is named by Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO). Here, we introduce J-OFURO. The data set includes shortwave radiation, longwave radiation, latent heat flux, sensible heat flux, and momentum flux etc. Moreover, sea surface dynamic topography data are included in the data set. Radiation data sets covers western Pacific and eastern Indian Ocean because we use a Japanese geostationally satellite (GMS) to estimate radiation fluxes. On the other hand, turbulent heat fluxes are globally estimated. The constructed data sets are used and shows the effectiveness for many scientific studies.

  • PDF

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

A Study on Data Processing Technology based on a open source R to improve utilization of the Geostationary Ocean Color Imager(GOCI) Products (천리안해양관측위성 산출물 활용성 향상을 위한 오픈소스 R 기반 데이터 처리기술 연구)

  • OH, Jung-Hee;CHOI, Hyun-Woo;LEE, Chol-Young;YANG, Hyun;HAN, Hee-Jeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.215-228
    • /
    • 2019
  • HDF5 data format is used to effectively store and distribute large volume of Geostationary Ocean Color Imager(GOCI) satellite data. The Korea Ocean Satellite Center has developed and provided a GOCI Data Processing System(GDPS) for general users who are not familiar with HDF5 format. Nevertheless, it is not easy to merge and process Hierarchical Data Format version5(HDF5) data that requires an understanding of satellite data characteristics, needs to learn how to use GDPS, and stores location and attribute information separately. Therefore, the open source R and rhdf5, data.table, and matrixStats packages were used to develop algorithm that could easily utilize satellite data in HDF5 format without the need for the process of using GDPS.

Development of Data Logger System for Ocean Bottom Seimometer (해저면지진계 데이터 기록장치 개발 연구)

  • Hong, Sup;Kim, Hyung-Woo;Lee, Jong-Moo;Choi, Jong-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.336-339
    • /
    • 2003
  • A digital data logging system has been developed for the purpose of a compact offline Ocean Bottom Seismometer(OBS). The Digital Data Logger(DDL) consists of A/D system, Micom with storage memory and firmware managing data files. The A/D system acquires data of 16bit/4ch with sampling rate of 250Hz per channel. The Micom, a micro controller board with T33521 processor of 8051 class, was equipped with 8 flash memories of 128MB for data storage capacity of 1GB. The firmware stores the acquiring data in form of binary files. The DDL was designated to be compact and light and to consume low energy as possible. The DDL is to interface with PC through USB(Universal Serial Bus). The performance of the DDL has been validated through tests with respect to a 3-axis seismometer.

  • PDF

Validation of the semi-analytical algorithm for estimating vertical underwater visibility using MODIS data in the waters around Korea

  • Kim, Sun-Hwa;Yang, Chan-Su;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.601-610
    • /
    • 2013
  • As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.

International Trend Towards Comparability of Glabal Oceanic Nutrient Data: SCOR Working Group 147 (Towards Comparability of Global Oceanic Nutrient Data, COMPONUT) Activity (전 세계 대양 영양염 자료의 상호 비교성 향상을 위한 국제동향 : SCOR Working Group 147 (Towards Comparability of Global Oceanic Nutrient Data, COMPONUT) 활동에 대하여)

  • Rho, TaeKeun;Kim, Eun-Soo;Kahng, Sung-Hyun;Cho, Sung-Rok
    • Ocean and Polar Research
    • /
    • v.37 no.3
    • /
    • pp.225-233
    • /
    • 2015
  • To understand the fluctuation of global carbon levels caused by the biogeochemical cycle within the ocean interior, it is essential to achieve comparability of global oceanic nutrient data to a fairly high degree. The Scientific Committee on Ocean Research (SCOR) commissioned a working group (WG147) to establish a system for achieving comparability of oceanic nutrient data within 1% among laboratories around the world. The introduction of international activities for improving nutrient comparability will facilitate the use of nutrient reference material of seawater by researchers within Korea, which will help in meeting international standards of nutrient comparability and promote international cooperation.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

ESTIMATION OF IOP FROM INVERSION OF REMOTE SENSING REFLECTANCE MODEL USING IN-SITU OCEAN OPTICAL DATA IN THE SEAWATER AROUND THE KOREA PENINSULA

  • Moon, Jeong-Eon;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.224-227
    • /
    • 2006
  • For estimation of three inherent optical properties (IOPs), the absorption coefficients for phytoplankton ($a_{ph}$) and suspended solid particle ($a_{ss}$) and dissolved organic matter ($a_{dom}$), from ocean reflectance, we used inversion of remote sensing reflectance model (Ahn et al., 2001) at this study. The IOP inversion model assumes that (1) the relationship between remote sensing reflectance ($R_{rs}$) and absorption (a) and backscattering ($b_{b}$) is well known, (2) the optical coefficients for pure water ($a_{w}$, $b_{bw}$) are known, (3) the spectral shapes of the specific absorption coefficients for phytoplankton ($a^*_{ph}$) and suspended solid particle ($a^*_{ss}$) and the specific backscattering coefficients for phytoplankton ($b_b^*_{ph}$) and suspended solid particle ($b_b^*_{ss}$) are known. The input data of IOP inversion model is used in-situ ocean optical data at the seawater around the Korea Peninsula for 5 years (2001-2005). We compared the output data of the IOP inversion model and the in-situ observation for seawater around the Korea Peninsula.

  • PDF