DOI QR코드

DOI QR Code

A Study on Data Processing Technology based on a open source R to improve utilization of the Geostationary Ocean Color Imager(GOCI) Products

천리안해양관측위성 산출물 활용성 향상을 위한 오픈소스 R 기반 데이터 처리기술 연구

  • OH, Jung-Hee (Marine Bigdata Center, Korea Institutue of Ocean Science & Technology) ;
  • CHOI, Hyun-Woo (Marine Bigdata Center, Korea Institutue of Ocean Science & Technology) ;
  • LEE, Chol-Young (Marine Bigdata Center, Korea Institutue of Ocean Science & Technology) ;
  • YANG, Hyun (Korea Ocean Satellite Center, Korea Institutue of Ocean Science & Technology) ;
  • HAN, Hee-Jeong (Korea Ocean Satellite Center, Korea Institutue of Ocean Science & Technology)
  • 오정희 (한국해양과학기술원 해양빅데이터센터) ;
  • 최현우 (한국해양과학기술원 해양빅데이터센터) ;
  • 이철용 (한국해양과학기술원 해양빅데이터센터) ;
  • 양현 (한국해양과학기술원 해양위성센터) ;
  • 한희정 (한국해양과학기술원 해양위성센터)
  • Received : 2019.10.23
  • Accepted : 2019.12.23
  • Published : 2019.12.31

Abstract

HDF5 data format is used to effectively store and distribute large volume of Geostationary Ocean Color Imager(GOCI) satellite data. The Korea Ocean Satellite Center has developed and provided a GOCI Data Processing System(GDPS) for general users who are not familiar with HDF5 format. Nevertheless, it is not easy to merge and process Hierarchical Data Format version5(HDF5) data that requires an understanding of satellite data characteristics, needs to learn how to use GDPS, and stores location and attribute information separately. Therefore, the open source R and rhdf5, data.table, and matrixStats packages were used to develop algorithm that could easily utilize satellite data in HDF5 format without the need for the process of using GDPS.

해양관측 정지궤도 위성인 GOCI(Geostationary Ocean Color Imager) 데이터는 대용량 산출물을 효과적으로 저장, 배포하기 위해 HDF5 자료 형식을 사용하고 있다. 해양위성센터에서는 HDF5(Hierarchical Data Format version5) 포맷에 익숙지 않은 일반 사용자를 위해 GDPS(GOCI Data Processing System)를 개발하여 관측자료와 함께 제공하고 있다. 그럼에도 불구하고 위성데이터 특성에 대한 이해와 GDPS의 사용법을 익혀야 하는 점, 그리고 위치정보와 속성정보가 분리되어 있는 HDF5 형식의 자료를 병합하고 가공하는 일은 쉽지 않은 일이다. 따라서 본 연구에서는 오픈소스 R과 rhdf5, data.table, matrixStats 패키지를 이용하여 GDPS를 이용하는 과정 없이도 HDF5 형식의 위성데이터를 손쉽게 활용할 수 있는 알고리즘을 개발하였다.

Keywords

References

  1. Fischer, C.M. and M.L. Smith. 2019. rhdf5-HDF5 inteface for R. https://www.bioconductor.org/packages/release/bioc/vignettes/rhdf5/inst/doc/rhdf5.html(Accessed October 10, 2019)
  2. Fomferra, N. and C. Brockmann. 2005. BEAM-The ENVISAT MERIS and (A)ATSR toolbox. Proceeding of the MERIS(A) ATSR Workshop. Vol.1, pp.1-3.
  3. Fu, G., K. Settle, and C. R. McClain. 1998. SeaDAS:The SeaWiFS Data Analysis System. Proc of the Ocean Remote Sensing. Conference. pp.73-77.
  4. Han, H.J., J.H. Ryu and Y.H. Ahn. 2010. Development the Geostationary Ocean Color Imager(GOCI) Data Processing System(GDPS). Korean Journal of Remote Sensing. 26(2):239-249.
  5. Henrik, B. 2019. Package 'matrixStats'. https://cran.r-project.org/web/packages/matrixStats/matrixStats.pdf(Accessed October 10, 2019)
  6. Matt, D. 2019. Package 'data.table'. https://cran.r-project.org/web/packages/data.table/vignettes/datatable-intro.html(Accessed October 10, 2019)
  7. Park, K.A., H.J. Woo and J.H. Ryu. 2012. Spatial Scales of Mesoscale Eddies from GOCI Chlorophyll-a Concentration Images in the East/Japan Sea. Ocean Science Journal. 47(3):347-358. https://doi.org/10.1007/s12601-012-0033-3
  8. Ryu, J.H., H.J. Han, S.I. Cho, Y.J. Park, and Y.H. Ahn. 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS). Ocean Science Journal. 47(3):223-233. https://doi.org/10.1007/s12601-012-0024-4
  9. The HDF Group. 2019. INTRODUCTION TO HDF5. https://portal.hdfgroup.org/display/HDF5/Introduction+to+HDF5(Accessed October 10, 2019)
  10. Wikipedia. 2019. Hierarchical Data Format. https://en.wikipedia.org/wiki/Hierarchical_Data_Format(Accessed October 10, 2019).
  11. Yang, H., J.M. Ryu, H.J. Han, J.H. Ryu and Y.J. Park. 2012. Ocean Disaster Detection System(OD2S) using Geostationary Ocean Color Imager(GOCI). Korea Society of IT Services. 11:1-13.
  12. Yang, H., S. Yoon, H.J. Han, M.J. Heo and Y.J. Park. 2017. Data Processing System for the Geostationary Ocean Color Imager (GOCI). KIISE Transactions on Computing Practices. 23(1):74-79. https://doi.org/10.5626/KTCP.2017.23.1.74
  13. 한국해양위성센터. http://kosc.kiost.ac.kr(Accessed October 10, 2019)