• Title/Summary/Keyword: object occlusion

Search Result 208, Processing Time 0.026 seconds

Determination of Cost Function in Disparity Space Image (변이공간영상에서의 비용 함수의 결정)

  • Park, Jun-Hee;Lee, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.530-535
    • /
    • 2007
  • Disparity space image (DSI) technique is a method of establishing correspondence between a pair of images. It has a merit of generating a dense disparity map for each pixel. DSI has a cost function to be minimized, and it needs empirical weighting factors for occlusion penalty and match reward. This paper provides theoretical basis for the weighting factors, which depend on image noise and contrast between an object and background.

High Accuracy Vision-Based Positioning Method at an Intersection

  • Manh, Cuong Nguyen;Lee, Jaesung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.114-124
    • /
    • 2018
  • This paper illustrates a vision-based vehicle positioning method at an intersection to support the C-ITS. It removes the minor shadow that causes the merging problem by simply eliminating the fractional parts of a quotient image. In order to separate the occlusion, it firstly performs the distance transform to analyze the contents of the single foreground object to find seeds, each of which represents one vehicle. Then, it applies the watershed to find the natural border of two cars. In addition, a general vehicle model and the corresponding space estimation method are proposed. For performance evaluation, the corresponding ground truth data are read and compared with the vision-based detected data. In addition, two criteria, IOU and DEER, are defined to measure the accuracy of the extracted data. The evaluation result shows that the average value of IOU is 0.65 with the hit ratio of 97%. It also shows that the average value of DEER is 0.0467, which means the positioning error is 32.7 centimeters.

Object Tracking Based on Weighted Local Sub-space Reconstruction Error

  • Zeng, Xianyou;Xu, Long;Hu, Shaohai;Zhao, Ruizhen;Feng, Wanli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.871-891
    • /
    • 2019
  • Visual tracking is a challenging task that needs learning an effective model to handle the changes of target appearance caused by factors such as pose variation, illumination change, occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local sub-space reconstruction error is presented. First, accounting for the appearance changes in the tracking process, a generative weight calculation method based on structural reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware is introduced, in which we reconstruct a new template instead of simply exploiting the best observation for template update. The effectiveness and feasibility of the proposed algorithm are verified by comparing it with some state-of-the-art algorithms quantitatively and qualitatively.

Object Segmentation/Detection through learned Background Model and Segmented Object Tracking Method using Particle Filter (배경 모델 학습을 통한 객체 분할/검출 및 파티클 필터를 이용한 분할된 객체의 움직임 추적 방법)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1537-1545
    • /
    • 2016
  • In real time video sequence, object segmentation and tracking method are actively applied in various application tasks, such as surveillance system, mobile robots, augmented reality. This paper propose a robust object tracking method. The background models are constructed by learning the initial part of each video sequences. After that, the moving objects are detected via object segmentation by using background subtraction method. The region of detected objects are continuously tracked by using the HSV color histogram with particle filter. The proposed segmentation method is superior to average background model in term of moving object detection. In addition, the proposed tracking method provide a continuous tracking result even in the case that multiple objects are existed with similar color, and severe occlusion are occurred with multiple objects. The experiment results provided with 85.9 % of average object overlapping rate and 96.3% of average object tracking rate using two video sequences.

Depth Estimation Through the Projection of Rotating Mirror Image unto Mono-camera (회전 평면경 영상의 단일 카메라 투영에 의한 거리 측정)

  • Kim, Hyeong-Seok;Song, Jae-Hong;Han, Hu-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.790-797
    • /
    • 2001
  • A simple computer vision technology to measure the middle-ranged depth with a mono camera and a plain mirror is proposed. The proposed system is structured with the rotating mirror in front of the fixed mono camera. In contrast to the previous stereo vision system in which the disparity of the closer object is larger than that of the distant object, the pixel movement caused by the rotating mirror is bigger for the pixels of the distant object in the proposed system. Being inspired by such distinguished feature in the proposed system, the principle of the depth measurement based on the relation of the pixel movement and the distance of object is investigated. Also, the factors to influence the precision of the measurement are analysed. The benefits of the proposed system are low price and less chance of occlusion. The robustness for practical usage is an additional benefit of the proposed vision system.

  • PDF

Hierarchical Active Shape Model-based Motion Estimation for Real-time Tracking of Non-rigid Object (계층적 능동형태 모델을 이용한 비정형 객체의 움직임 예측형 실시간 추적)

  • 강진영;이성원;신정호;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In this paper we proposed a hierarchical ASM for real-time tracking of non-rigid objects. For tracking an object we used ASM for estimating object contour possibly with occlusion. Moreover, to reduce the processing time we used hierarchical approach for real-time tacking. In the next frame we estimated the initial feature point by using Kalman filter. We also added block matching algorithm for increasing accuracy of the estimation. The proposed hierarchical, prediction-based approach was proven to out perform the exiting non-hierarchical, non-prediction methods.

Multi-objects detection using HOG and effective individual object tracking (HOG를 이용한 다중객체 검출과 효과적인 개별객체 추적)

  • Choi, Min;Lee, Kyu-won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.894-897
    • /
    • 2012
  • We propose a effective method using the HOG (Histogram of Oriented Gradients) feature vector to track individual objects in an environment which multiple objects are moving. The proposed algorithm consists of pre-processing, object detection and object tracking. We experimented with six videos which have various trajectories and the movement. When occlusion between objects was occurred, we identified individual object by using center and predicted coordinates of moving objects. The algorithm shows 85.45% of tracking rate in the videos we experimented. We expect the proposed system is utilized in security systems which require the alalysis of the position and motion pattern of objects.

  • PDF

Object Contour Tracking Using Optimization of the Number of Snake Points in Stereoscopic Images (스테레오 동영상에서 스네이크 포인트 수의 최적화를 이용한 객체 윤곽 추적 알고리즘)

  • Kim Shin-Hyoung;Jang Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.239-244
    • /
    • 2006
  • In this paper, we present a snake-based scheme for contour tracking of objects in stereo image sequences. We address the problem by managing the insertion of new points and deletion of unnecessary points to better describe and track the object's boundary. In particular, our method uses more points in highly curved parts of the contour, and fewer points in less curved parts. The proposed algorithm can successfully define the contour of the object, and can track the contour in complex images. Furthermore, we tested our algorithm in the presence of partial object occlusion. Performance of the proposed algorithm has been verified by simulation.

Accurate Pig Detection for Video Monitoring Environment (비디오 모니터링 환경에서 정확한 돼지 탐지)

  • Ahn, Hanse;Son, Seungwook;Yu, Seunghyun;Suh, Yooil;Son, Junhyung;Lee, Sejun;Chung, Yongwha;Park, Daihee
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.890-902
    • /
    • 2021
  • Although the object detection accuracy with still images has been significantly improved with the advance of deep learning techniques, the object detection problem with video data remains as a challenging problem due to the real-time requirement and accuracy drop with occlusion. In this research, we propose a method in pig detection for video monitoring environment. First, we determine a motion, from a video data obtained from a tilted-down-view camera, based on the average size of each pig at each location with the training data, and extract key frames based on the motion information. For each key frame, we then apply YOLO, which is known to have a superior trade-off between accuracy and execution speed among many deep learning-based object detectors, in order to get pig's bounding boxes. Finally, we merge the bounding boxes between consecutive key frames in order to reduce false positive and negative cases. Based on the experiment results with a video data set obtained from a pig farm, we confirmed that the pigs could be detected with an accuracy of 97% at a processing speed of 37fps.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.