
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 2, Feb. 2019                    871 
Copyright ⓒ 2019 KSII 

 

Object Tracking Based on Weighted Local 
Sub-space Reconstruction Error 

 
Xianyou Zeng1,2, Long Xu3, Shaohai Hu1,2, Ruizhen Zhao1,2*, Wanli Feng1,2 
1 Institute of Information Science, Beijing Jiaotong University, Beijing, China, 100044 

2 Key Laboratory of Advanced Information Science and Network Technology of Beijing, Beijing, China  

[e-mail: 14112057@bjtu.edu.cn, shhu@bjtu.edu.cn, rzhzhao@bjtu.edu.cn, 15120327@bjtu.edu.cn] 
3 Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 

China, 100012 

[e-mail: lxu@nao.cas.cn] 
*Corresponding author: Ruizhen Zhao 

 
Received December 25, 2017; revised March 15, 2018; accepted April 4, 2018;  

published February 28, 2019 
 

 

Abstract 
 

Visual tracking is a challenging task that needs learning an effective model to handle the 
changes of target appearance caused by factors such as pose variation, illumination change, 
occlusion and motion blur. In this paper, a novel tracking algorithm based on weighted local 
sub-space reconstruction error is presented. First, accounting for the appearance changes in 
the tracking process, a generative weight calculation method based on structural 
reconstruction error is proposed. Furthermore, a template update scheme of occlusion-aware 
is introduced, in which we reconstruct a new template instead of simply exploiting the best 
observation for template update. The effectiveness and feasibility of the proposed algorithm 
are verified by comparing it with some state-of-the-art algorithms quantitatively and 
qualitatively. 
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1. Introduction 

With the rapid development of computer hardware level, image processing technology 
and artificial intelligence, computer vision has been widely applied in many fields of human 
activity and life, such as information retrieval (e.g. [34-36]), intelligent classification (e.g. 
[37-38]), decision making system and so on. Visual tracking plays a critical role in computer 
vision due to its wide range of applications such as motion analysis, video surveillance, 
vehicle navigation, human-computer interaction, aeronautics and astronautics. Although 
significant progress has been made in the past decades, robust object tracking is still a 
challenging problem due to numerous factors such as partial occlusion, illumination 
variation, motion blur and pose change. 

The existing object tracking methods are classified into two categories: generative 
methods (e.g. [1-4]) and discriminative methods (e.g. [5-8], [29]). The discriminative 
methods transform the tracking into a classification problem and distinguish the target and 
the background by modeling a conditional distribution. The generative tracking methods aim 
to learn a visual model representing the appearance of the target being tracked and perform 
the tracking by looking for the image area that most matches the target object. It has been 
shown that generative models achieve higher generalization when training data is limited 
[17], while discriminative models perform better if the training set is large [18]. In addition, 
many hybrid tracking methods [16], [28] have been proposed to take the advantages of both 
generative and discriminative models.  

In generative tracking methods, the object appearance representation is very important 
and greatly affects the likelihood estimation. Many representation schemes have been 
proposed, such as template-based (see [1], [4], [9]), sub-space-based (see [2], [10-11]), 
sparse representation-based (see [3], [12-13], [31], [33]) and feature-based (see [5-7], [15]) 
models. Among these representation methods, sub-space representation models provide a 
compact concept for the tracked object and promotes other visual tasks. Ross et al. [2] 
proposed an incremental visual tracking (IVT) method which is robust to in-plane rotation, 
illumination variation, scale change and pose change. However, it has been shown that the 
IVT method is sensitive to partial occlusion. 

Considering the partial occlusion, quite a few attempts have been made. Adam et al. [1] 
proposed a fragment-based tracking approach, where the target region is partitioned into 
several fragments and partial occlusion is handled by combining the voting maps of these 
fragments. The authors of [19] extended the idea of fragment and presented local sensitive 
histogram to overcome multiple challenges including illumination changes and partial 
occlusion for robust tracking. In [20], the bag of words model was introduced into visual 
tracking to address partial occlusion. In [3] and [13], partial occlusion was modeled by 
sparse representation of trivial templates. The authors in [32] use a regularized robust sparse 
coding (RRSC) to robustly deal with occlusion and noise.     

In this paper, a new visual tracking algorithm based on weighted local sub-space 
reconstruction error is proposed. First, candidate targets are represented through the PCA 
sub-space. Second, patch-based generative weights are computed from structural 
reconstruction error. Based on the patch-based representation error of the PCA sub-space and 
the patch-based generative weight, an effective tracking method based on particle filter is 
developed and used for the prediction of the tracked target. In addition, a template update 
scheme of occlusion-aware is introduced, which can handle appearance changes caused by 
occlusion or other disturbances during tracking. The main contributions of this work are 
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outlined below. 
(1) A novel tracking algorithm based on weighted local sub-space reconstruction error is 

presented in this paper. 
(2) A generative weight calculation method based on structural reconstruction error is 

inserted to deal with appearance changes in the tracking process. 
(3) A template update scheme of occlusion-aware is introduced to avoid bringing noise 

into the template set by reconstructing a new template for template update. 
The rest of the paper is arranged as follows. The related work is briefly introduced in 

section 2. The proposed tracking algorithm is described in detail in section 3. The 
comparisons between the proposed tracking algorithm and some state-of-the-art  tracking 
algorithms are presented in section 4. Finally, the concluding remark is given in section 5.  

2. Related work  
A lot of works have been done in visual tracking and good reviews can be seen from [21-22]. 
Here, we discuss the methods that are most related to our work, namely, incremental 
sub-space learning based trackers and sparse representation based trackers.  
 
2.1 incremental sub-space learning based trackers 
In recent years, visual tracking based on sub-space learning ([2], [10-11], [23]) has received 
considerable attention. The IVT method [2] incrementally learns and updates a low 
dimensional PCA sub-space representation, which online adapts to the appearance changes 
of the target. Several experimental results demonstrate that the IVT method is effective in 
dealing with appearance changes caused by in-plane rotation, scale and illumination 
variations. However, it has the following drawbacks. Firstly, the IVT method assumes that 
the reconstruction error is Gaussian distributed with small variances. The assumption does 
not hold as partial occlusion occurs, resulting in compromised performance of tracking. 
Secondly, the IVT method doesn’t have an effective update scheme. It directly updates the 
sub-space model with new observations without detecting and processing outliers. To solve 
partial occlusion, Lu et al. [10] introduced 1l  noise regularization into the PCA 
reconstruction. Wang et al. [11] utilized the linear regression with Gaussian-Laplacian 
assumption to deal with outliers for reliable tracking. Pan et al. [23] employed 0l  norm to 
regularize the linear coefficients of incrementally updated linear basis to remove the 
redundant features of basis vectors. Zhou et al. [39] developed a tracking algorithm based on 
weighted sub-space reconstruction error, which can take the advantages of sparse 
representation and sub-space learning model. Different from the aforementioned holistic 
models, a novel tracking method via weighted local sub-space reconstruction error is 
proposed in this paper.      
 
2.2 sparse representation based trackers 
Sparse representation has been widely studied and applied to visual tracking. Mei and Ling 
[3] sparsely represented each candidate object in a space spanned by target templates and 
trivial templates to tackle occlusion and corruption challenges. Liu et al. [24] incorporated 
group sparsity to boost the robustness and efficiency of the tracker. In [13], a faster version 
of [3] was proposed, which was further extended to handle multi-task in [25]. The works in 
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[26] and [27] combined sparse representation and incremental sub-space learning for object 
tracking by reconstructing a new template and exploiting it for template update. Our method 
is motivated by the works in [10], [26], [27]. We use a patch-based generative weight to 
adjust the patch-based reconstruction error of PCA sub-space model. To get rid of image 
noise, we introduce an occlusion-aware template update scheme for the object tracking. 
2.3 deep networks based trackers 
Recently, deep neural network has been introduced into tracking for its powerful feature 
learning capability. In [40], a neural network with three convolution layers was proposed for 
visual tracking, which learned feature representation and classifier simultaneously. In [41] 
and [30], a convolution neural network (CNN) was respectively pre-trained on image 
classification dataset, and then it was transferred to visual tracking. In [42] and [43], the 
authors directly trained their CNNS on large amounts of video sequences.   

       

3. Proposed visual tracking algorithm 
Object tracking can be considered as a Bayesian filtering process. Let the target state 

{ }1 2 3 4= , , , , ,t x yx l l µ µ µ µ , where xl , yl , 1µ , 2µ , 3µ , 4µ   denote the horizontal and 
vertical translations, rotation angle, scale, aspect ratio, and skew parameter respectively. 
Given the observation set { }1 2, ,...,t tY y y y=  up to frame t , we estimate the state of the 

object tx  recursively  

 ( ) ( ) ( ) ( )1 1 1 1t t t t t t t t tp x Y p y x p x x p x Y dx− − − −∝ ∫ , (1)             

where ( )1t tp x x −  is the motion model that represents the state transition of the object 

between the two consecutive frames, and ( )t tp y x  denotes the observation model that 

estimates the likelihood of the observation ty  at state tx . Particle filtering is an effective 
implementation of Bayesian filtering. The optimal state is computed by the maximum a 
posterior estimation (MAP) of N  samples, 

 ( ) 1arg max
i
t

i i
t t t t t

x
x p y x p x x
∧ ∧

−
 =  
 

, (2) 

where i
tx  is the i th−  sample of frame t . The observation model ( )i

t tp y x  in (2) is 

crucial for robust tracking. In this paper, the observation model is estimated through a 
weighted local PCA sub-space model. Fig. 1 shows the observation model of our method, 
which will be explained in detail as follows. 
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Fig. 1. The weighted local PCA sub-space observation model. 

              
3.1 Motivation of this work 
We assume that target appearance can be represented by an image sub-space with corruption, 

 q

z
y Uz e U I

e
 

 = + =   
 

, (3) 

where 1qy R ×∈  denotes an observation vector, U  represents a matrix of column basis 

vectors, q q
qI R ×∈  is an identity matrix, z  is the coefficient vector of basis vectors, and 

e  indicates the error term modeled by a Laplacian noise. The coefficient vector z  and the 
error term e  can be computed by  

 [ ]
2

1,
2

1, min
2z e

z e y Uz e eλ
−

= − − + , (4) 

where y y µ
−

= − , µ  is the mean vector. After obtaining z , the observation likelihood of 
the observation y  can be measured by the reconstruction error  

 
( )

( )

2

2

2

2

exp

exp PCA

p y x y Uz

E

− 
= − −  

 

= −

, (5) 

where PCAE  is the reconstruction error. Eq. (5) is a holistic estimation method. It is usually 
sensitive to partial occlusion.  

Inspired by local models, we reorganize the reconstruction error PCAE  as the connection 

of M  local feature vectors 1 2, ,...,
TT T T

PCA ME t t t =   , where 1l
it R ×∈  is a column vector 

denoting the i th−  local patch of the reconstruction error, and qM l= . Then, Eq. (5) can 

be reformulated as  
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( ) ( )
( )
( )

2

2

2 2 2
1 22 2 2

2 2 2
1 22 2 2

exp

exp ...

exp 1 1 ... 1

PCA

M

M

p y x E

t t t

t t t

= −

 = − + + +
 
 = − • + • + + •
 

. (6) 

From (6), we can see that the penalty weight of each part it  is 1, which means that holistic 
model deals with the observation uniformly and treats each part of the observation equally 
regardless of the condition of each part of the observation during the tracking. It does not 
hold when the observation is subjected to some impulse noise, such as partial occlusion and 
local illumination variations. Based on the above discussion, we aim to learn a set of 
generative weights via sparse coding of each local patch of the observation to penalize each 
part of the reconstruction error PCAE  differently.   

3.2 Weight learning by structural reconstruction error 
1) Preprocessing: Each input image is adjusted to a standard size of 32 32×  pixels and 
represented by gray-scale features. We employ a sliding window to sample a bank of 
non-overlapping local image patches { }1 2, ,..., l M

MX x x x R ×= ∈  in the input image, where 

ix  is the i th−  column local vectorized patch, l  is the dimension of patch vectors and 
M  is the number of local patches. Each patch ix  is preprocessed by 2l  normalization.  

2) Templates: Initially, we use the CT algorithm [7] to track the first n  frames. Tracking 
results are used to form the templates [ ]1 2, ,..., nT T T T= . Each template is split into local 

image patches. Then a dictionary [ ] ( )
1 2, ,..., l M n

M nD d d d R × ×
×= ∈  can be obtained for 

encoding local patches of each candidate target. Each element id  is a normalized column 
vector which corresponds to a local patch cropped from T .   

3) Weight learning: Given a candidate target, each local image patch ix  of it can be 
encoded using the elements of the dictionary D  by solving 

    

 2
12 1

min
i

i i ix D λ
∂

− ∂ + ∂ , (7) 

where ( ) 1M n
i R × ×∂ ∈  is the sparse code of ix , 1λ  is a control parameter.  

In order to take into account the spatial layout, the dictionary D  can be written as 

 ( )

[ ]
1 1 2 1 1,..., , ,..., ,..., ,...,

,

M M M nMn M

i other

D d d d d d d

D D

+ − +
 =  

=
, (8) 
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where ( )1, ,..., l n
i i M i n M iD d d d R ×

+ − +
 = ∈  , 1 i M≤ ≤ , otherD  is made up of the other 

elements of D . Accordingly, the sparse code i∂  can be denoted as ,
TT T

i i otherβ β ∂ =   , 

where ( )1 1, ,...,
Tn M ii M i n

i i i i Rβ − ++ × = ∂ ∂ ∂ ∈   is the sparse coefficients of the patch ix  

under sub-dictionary iD , otherβ  is the sparse coefficients of the patch ix  under 
sub-dictionary otherD .  

The weight of ix  can be obtained by 

 ( ) ( )( )2

2 1
1i i i i i iw x D Dω γ ω= − ⊗∂ + − ⊗∂ , (9) 

where ( )1 2, ,...,
TM n

i i i iω ω ω ω × =    is an indicator vector, ⊗  is the element-wise 

multiplication, and γ  is a control parameter. Each element of iω  is obtained by  

 
( )1, , ,..., 1

0,
j

i

j i M i n M i
others

ω
= + − += 


. (10) 

The flow of weight calculation is shown in Fig. 2. In (9), the first term is the reconstruction 
error of ix  under sub-dictionary iD , and the second term is the sparse reconstruction of 

ix  under sub-dictionary otherD  which is a penalty term. If the candidate target is perfect, 
both the first and the second terms on the right side of (9) are very small. Otherwise, they 
become very large. In this way, we can learn a set of different weights for local patches of 

the candidate target which satisfies 
1

1
M

i
i

w
=

=∑ . The main advantage lies in that the structural 

similarity between the candidate target and templates is fully considered. Then, the 
observation likelihood of the candidate target can be measured by 

 2

2 0
1

exp
M

i i
i

p w t eτ
=

  = − • +  
  
∑ , (11) 

where 
0

e  denotes the number of the outliers of the candidate target, τ  is a constant. 
After the observation likelihood of all candidate targets is obtained, the candidate target with 
the biggest observation likelihood is taken as the tracked target. 
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Fig. 2. Overall diagram of weight calculation. 

3.3 Model updating 
To adapt to the appearance change of a target object, the observation model needs to be 
updated dynamically. The model updating includes the updating of PCA sub-space and 
templates. 

1) PCA sub-space updating: since the error term e  can identify some outliers (e.g. 
partial occlusion, illumination change), we adopt the strategy proposed by [11] to update 
PCA sub-space (including PCA basis U  and the mean vector µ ). After we obtain the 
tracked target of each frame oy , the tracked target is reconstructed by 

 
, 0
, 0

i i
o oi

r i i
o o

y e
y

eµ

 == 
≠

, (12) 

where ry  is the reconstructed vector of the tracked target of each frame, oe  is the error 
term corresponding to the tracked target oy . ry  is cumulated and used to incrementally 
update U  and µ .     

2) Occlusion-aware template updating: In this study, we give each template iT  a weight 

ia  which has an initial value of 1. After obtaining the reconstructed vector of the tracked 
target in each frame, we update the value of the weight ia  as follows. 

  i
i ia a e θ−= , (13) 

where iθ  is the angle between iT  and ry . In [26] and [27], sparse representation and 

incremental sub-space learning are used to reconstruct a new template for the template 
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update, which can avoid introducing noise into templates T . Inspired by the work [26] and 
[27], we propose an effective template update method. The template updating method 
includes two operations: template replacement and weight updating. For template 
replacement, we first get the coefficient z  of the tracked target in each frame, and then 
reconstruct a new template through 

 T Uz µ∗ = + . (14) 

T ∗  replaces the template that has the least weight. During weight updating, the median 
weight of the rest 1n −  templates is used as the weight of T ∗ . Algorithm 1 summarizes 
our method and its process is shown in Fig. 3.   

 
Algorithm 1.  Our proposed tracker 

Inputs: Initial target state 1x
∧

, number of templates n , update interval m . 

1. Initialization:  
template set T  and reconstructed target set φΦ = ; 

2. Construct the dictionary D  with the local patches of templates; 
3. For 1,...,t n s= +  do  

4.  Produce N  candidate targets { }
1

Ni
t i

x
=

 with the motion model 1
i
t tp x x

∧

−
 
 
 

; 

5.  Calculate weights for local patches of each candidate target using Eq. (9);   
6.  Estimate the observation likelihood of candidate targets according to Eq. (11); 

7.  Determine the tracked target tx
∧

 using the biggest observation likelihood; 

8.  Obtain the reconstructed vector rx  of the tracked target tx
∧

 using Eq. (12), 

and then [ ], rxΦ = Φ ; 

9.  If size(Φ )== m  then 
10.   Update the PCA sub-space with Φ , and empty Φ ;  
11.   Get the new template T ∗  through Eq. (14) and update the template set; 
12.   Rebuild the dictionary D  with local patches of the new template set;  
13.  End if    
14. End for  

Outputs: Tracked targets tx
∧

, 2,...,t s= . 
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Fig. 3. Overview diagram of the proposed tracking approach. 

4. Experimental results 

4.1 Implementation details 
The proposed algorithm is executed in MATLAB and has a running speed of 1.1 frames per 
second on a 3.4 GHZ i7-4770 core PC with 16GB memory. The number of templates n  is 
10. For all experiments, the number of patch M  is 16. The variable λ  in (4), 1λ  in (7), 
γ  in (9) and τ  in (11) are set to 0.1, 0.01, 0.01 and 0.05 respectively. 

{ }1 2 3 4, , , , ,x yl l µ µ µ µ  is fixed to { }6,6,0.01,0,0.005,0 . The maximum number of PCA 

basis vectors is set to 16. The number of particles N  is set to 600 for balancing 
effectiveness and speed. The proposed observation model is updated every 5 frames.  

4.2 Quantitative evaluation 
In order to evaluate the effectiveness and feasibility of the proposed tracker (WLSRE), 
experiments are carried out on 26 publicly available sequences [22] which contain different 
challenging situations (e.g. partial occlusion, illumination variation, etc.). Our WLSRE 
tracker is compared with seven state-of-the-art trackers: IVT [2], LSST [11], SPT [10], 
ASLA [26], CT [7], KCF [15], and TGPR [14].  

Two metrics are measured to evaluate the proposed algorithm with other state-of-the-art 
methods. The first metric is the center location error which reflects the error between the 
center of the tracking bounding box and the center of the ground truth bounding box. The 

second one is the overlap rate, defined as 
( )
( )

T G

T G

area R R
score

area R R
∩

=
∪

, where TR  and GR  

mark the tracking bounding box and the ground truth bounding box. The average center 
location errors are reported in Table 1, where smaller center errors mean more accurate 
tracking results. The average overlap rates are listed in Table 2, where the larger the value, 
the more accurate the tracking result. It can be concluded from these tables that the proposed 
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tracker is effective and feasible.   
 

Table 1. Average center location error (in pixels). Top three results are shown in color fonts. 
sequence LSST SPT IVT ASLA CT KCF TGPR WLSRE 

Basketball 107.94 5.97 107.11 82.63 89.11 8.07 9.43 10.23 
doll 12.08 40.01 32.65 11.84 21.82 8.27 5.97 6.79 
boy 109.29 57.62 91.25 106.07 9.03 2.67 3.38 14.69 
Car4 2.66 113.84 2.15 1.59 86.03 9.47 6.11 2.29 

Cardark 1.37 61.14 8.43 1.54 119.22 5.76 2.13 2.04 
David 95.53 19.46 4.82 5.07 10.49 8.06 5.31 6.12 

David2 5.10 50.71 1.17 1.45 76.70 2.29 2.05 2.39 
David3 6.05 6.36 51.95 87.76 88.66 4.06 6.93 7.27 
Dog1 4.41 18.44 3.46 4.87 6.99 4.15 5.86 5.11 
Dudek 9.07 102.07 9.62 15.26 26.53 11.38 17.27 8.20 

Faceocc1 15.17 30.73 18.42 78.06 25.82 15.98 13.73 14.36 
Fish 3.99 22.53 5.67 3.85 10.68 4.08 5.62 4.39 

Fleetface 34.79 180.02 62.23 31.09 58.43 26.37 29.22 24.08 
Football 30.14 36.53 14.34 15.00 11.91 14.80 5.94 19.88 
Faceocc2 10.63 50.77 7.42 19.34 18.95 7.67 7.56 13.52 
Freeman1 58.21 46.19 11.64 105.66 118.72 94.62 9.34 9.43 
Freeman3 3.31 60.16 35.76 3.17 65.32 19.57 88.28 1.89 
Football1 11.49 10.77 24.47 12.22 20.71 5.16 11.49 7.57 
Jogging2 134.95 50.07 138.22 169.86 139.30 144.03 5.39 4.16 
Jumping 60.43 31.15 61.56 46.08 47.73 25.99 54.16 5.09 
Lemming 177.70 172.59 181.79 178.82 32.25 77.97 150.32 18.29 
Mhyang 2.10 19.62 1.87 1.70 13.28 3.92 4.43 2.64 
Singer1 2.77 225.79 11.31 3.29 15.53 12.59 120.29 2.48 
Singer2 14.59 241.07 175.46 175.28 127.31 10.26 10.13 15.63 

Walking2 61.28 21.93 2.46 37.42 58.53 29.57 5.90 1.47 
Walking 1.62 5.30 1.61 1.89 6.95 4.26 5.01 2.29 
Average 37.56 64.65 41.03 46.19 50.23 21.58 22.74 8.17 

 
Table 2. Average overlap rate. Top three results are shown in color fonts.  

sequence LSST SPT IVT ASLA CT KCF TGPR WLSRE 
Basketball 0.0828 0.7609 0.1051 0.3839 0.2563 0.6716 0.6484 0.6420 

doll 0.6960 0.3856 0.4345 0.8262 0.4529 0.5348 0.5746 0.6703 
boy 0.3579 0.3057 0.2602 0.3694 0.5902 0.7863 0.7570 0.6366 
Car4 0.8808 0.1249 0.8755 0.7536 0.2135 0.4846 0.4978 0.8817 

Cardark 0.8357 0.1883 0.6632 0.8492 0.0031 0.6224 0.8073 0.8017 
David 0.1732 0.4065 0.6449 0.7485 0.4956 0.5384 0.5863 0.6429 

David2 0.4892 0.1372 0.7015 0.8964 0.0025 0.8177 0.8224 0.7065 
David3 0.3965 0.7550 0.4806 0.4324 0.3064 0.7748 0.7363 0.6922 
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Dog1 0.7613 0.4417 0.7411 0.7232 0.5352 0.5519 0.6031 0.7446 
Dudek 0.7956 0.4055 0.7528 0.7366 0.6470 0.7284 0.7011 0.7903 

Faceocc1 0.7680 0.6336 0.7264 0.3186 0.6369 0.7539 0.7772 0.7754 
Fish 0.7109 0.4914 0.7715 0.8505 0.7157 0.8394 0.8151 0.7060 

Fleetface 0.6125 0.0324 0.4574 0.5657 0.5214 0.5847 0.5592 0.6391 
Football 0.3425 0.1678 0.5566 0.5309 0.6100 0.5447 0.6978 0.5557 
Faceocc2 0.4630 0.2702 0.7273 0.6455 0.6078 0.7511 0.7699 0.6754 
Freeman1 0.2585 0.1897 0.4256 0.2652 0.1445 0.2151 0.4091 0.5285 
Freeman3 0.6678 0.2734 0.3943 0.7460 0.0025 0.3220 0.0534 0.6167 
Football1 0.4805 0.5147 0.5572 0.4927 0.2270 0.7232 0.6160 0.5892 
Jogging2 0.1342 0.1438 0.1440 0.1422 0.1054 0.1258 0.7708 0.6920 
Jumping 0.1260 0.1831 0.1223 0.2266 0.0431 0.2761 0.0859 0.6523 
Lemming 0.1439 0.1183 0.1386 0.1448 0.5492 0.3836 0.2205 0.6335 
Mhyang 0.8336 0.5641 0.7963 0.9156 0.6002 0.7966 0.7696 0.8555 
Singer1 0.8768 0.1861 0.5738 0.7918 0.3477 0.3549 0.2282 0.7701 
Singer2 0.6166 0.0351 0.0429 0.0438 0.0826 0.7315 0.7272 0.6226 

Walking2 0.3519 0.2973 0.7948 0.3713 0.2658 0.3874 0.5964 0.7997 
Walking 0.7571 0.5973 0.7660 0.7717 0.5205 0.5298 0.5937 0.7208 
Average 0.5236 0.3311 0.5252 0.5593 0.3647 0.5704 0.5932 0.6939 

 

4.3 Qualitative evaluation 
We choose some tracking results from the test sequences for qualitative evaluation. The 
results are shown in Figs. 4-9, which exhibit the feasibility and effectiveness of the proposed 
method.   

Heavy occlusion: We test several sequences (Faceocc1, Faceocc2, Jogging2, David3, 
Walking2) with heavy or long-time partial occlusion. In the Faceocc1 sequence, a woman 
frequently uses a book to occlude her face. With the exception of ASLA and SPT, the 
remaining six trackers perform well. For the Faceocc2 sequence, IVT, KCF, TGPR and our 
WLSRE tracker can successfully track the target. In the Jogging2 sequence, the target meets 
with heavy occlusion. LSST, KCF, CT, ASLA, IVT and SPT are unable to recapture the 
target and suffer significant deviation when the person passes through the obstacle and 
reappears (see #62, #150 and #307). In contrast, TGPR and our WLSRE tracker precisely 
track the target in this sequence. In the David3 sequence, TGPR, KCF, SPT and our tracker 
successfully deal with heavy occlusion and perform well in this sequence (seen from #83, 
#150 and #220). In the Walking2 sequence, the walking woman is occluded by a man for a 
long period of time. Only IVT, TGPR and our WLSRE tracker successfully complete the 
tracking task, which can be seen from #100, #240, #400 and #500. The robustness of our 
WLSRE tracker against occlusion can be attributed to two reasons: (1) patch-based weights 
impose larger penalties on occluded parts and reduce the influence of occlusion; (2) 
occlusion-aware template update scheme effectively prevents noise from entering the 
template set.  
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Fig. 4. Screenshots of the tracking results on 5 sequences with occlusion. 
 

Illumination variations: Fig. 5 provides the results of some sequences with illumination 
changes. In the Cardark sequence, CT can’t perform well (seen from #100, #250, #300 and 
#393). SPT loses the tracked object after 200 frames (seen from #250 and #300). IVT drifts 
away from the correct location of the target at last (see #393). KCF, TGPR, ASLA, LSST 
and our WLSRE tracker successfully capture the target trajectory of all frames. In the Fish 
sequence, the illumination changes obviously. All the methods except SPT robustly 
overcome this difficulty and achieve accurate tracking. For the Mhyang sequence, IVT and 
the proposed WLSRE method are superior to other methods and obtain better tracking results. 
In the David sequence, LSST cannot follow the tracked object rightly during tracking (seen 
from #409 and #499). CT and SPT exhibit a small deviation in some frames, which can be 
seen from #499 and #749 respectively. TGPR, KCF, ASLA, IVT and our WLSRE tracker 
successfully track the target throughout this sequence and ASLA achieves the best 
performance in terms of both location and scale. In the Car4 sequence, SPT and CT drift off 
the target when there is a large illumination variation at frames #200 and #240. Moreover, 
the target undergoes scale variation. While TGPR and KCF can successfully estimate the 
location of the target, they do not deal with scale changes of it well (seen from #400 and 
#500). Due to the use of incremental PCA sub-space, IVT, LSST, ASLA and the proposed 
algorithm achieve good performance in dealing with the appearance change caused by 
illumination and scale changes.   
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Fig. 5. The comparison of qualitative results on 5 sequences with illumination changes. 

 

Scale variations: Fig. 6 shows some of the results of four sequences containing scale 
variations. The target in the doll sequence experiences a long time scale change and rotation. 
SPT drifts away and finally loses the target (seen from #1000, #2250 and #3500). CT and 
IVT fail to precisely locate the target at the end (see #3500). Except for the three methods, 
the other five methods perform well. For the Dog1 and Walking sequences, LSST, IVT, 
ASLA and our WLSRE tracker are superior to others. The Singer1 sequence is very difficult 
due to large changes in light and scale. SPT runs poorly (see #200, #250 and #351). IVT 
slightly deviates from the target location (see #250 and #351). TGPR is incapable of tracking 
the target properly when drastic illumination changes occur (see #100, #200 and #351). As 
can be seen from frames #250 and #351, KCF and CT can’t deal with scale change well. 
ASLA, LSST and our WLSRE tracker robustly overcome the challenges caused by the 
changes in illumination and scale, and accurately locate the target over the whole sequence. 

 

Fig. 6. The representative results when the tracked targets experience scale variation. 
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Background clutters: Fig. 7 gives some representative tracking results of Football, 

Singer2, Basketball and Dudek sequences, where the targets are disturbed by background 
clutters. The target in the Football sequence not only has a very similar appearance to the 
background, but also is affected by occlusion and rotation. SPT can’t track the target 
accurately (seen from #100, #140 and #200). LSST drifts to the background (e.g. #200). CT, 
IVT, ASLA, KCF, TGPR and our WLSRE method can successfully track most frames. For 
the Singer2 sequence, the target being tracked goes through numerous  challenges including 
background clutters, illumination variations, deformation and rotation. SPT, IVT, ASLA and 
CT fail to track when the target rotates (e.g. #89). Instead, KCF, TGPR, LSST and our 
WLSRE method win mentioned challenges and exactly keep track of the target on this 
sequence (seen from #89, #200 and #300). In the Basketball sequence, TGPR, KCF, SPT and 
our WLSRE tracker persistently track the target, while other methods fail. The Dudek 
sequence involves a number of challenges of background clutters, occlusion and pose change. 
SPT fails in many frames (seen from #600, #800 and #1070). Except for SPT, other methods 
can stably track the target, among which LSST and our WLSRE method run best.  

 

 

Fig. 7. The results of all evaluated trackers on 4 sequences with background clutters. 
 

Fast motion: Fast motion of the target object leads to blurred image appearance which is 
difficult to tackle in tracking task. Fig.8 illustrates the tracking results on the Fleetface, boy, 
Jumping and Lemming sequences. For Fleetface sequence, most trackers can successfully 
track most of the frames except for SPT. In the boy sequence, the target suffers from fast 
motion, motion blur, as well as rotation. SPT, ASLA, IVT and LSST lose track of the target 
when motion blur occurs, whereas KCF, TGPR and our WLSRE method perform favorably 
(see #375 and #570). In the Jumping sequence, the target moves so drastically that it is 
difficult to predict its location. Only the proposed tracker successfully tracks the target in the 
entire sequence (seen from #34, #175 and #313). The Lemming sequence is very challenging 
for visual tracking as the target meets with multiple challenges of fast motion, heavy 
occlusion, together with out-of-plane rotation. We can note that CT and our method perform 
more excellently than other methods (e.g. #400, #850 and #1336). 
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Fig. 8. Qualitative evaluation of different tracking algorithms on 4 sequences with fast motion. 
 

Rotation: Fig. 9 presents a few results for four sequences with rotation challenge. In the 
David2 sequence, KCF, TGPR, IVT, ASLA and our WLSRE method perform well and 
achieve outstanding performance. In the Freeman1 sequence, the face of a man experiences 
large scale changes and rotation. Only IVT, TGPR and our WLSRE tracker can track the 
target of most frames, and our WLSRE method achieves the best overlap rate. The Freeman3 
sequence includes scale variation, in-plane and out-of-plane rotations, which makes this 
tracking task difficult. We can see that only LSST, ASLA and our WLSRE tracker can win 
these difficulties and exactly track the target throughout the frames, which has been verified 
on frames #146, #278, #350 and #460. There are in-plane rotation and out-of-plane rotation 
in the Football1 sequence. Along with rotation is background clutter. SPT performs 
unsteadily and shakes around the target position (seen from #14, #40 and #74). CT doesn’t 
track well from the beginning (see frame #14). LSST is unable to lock the tracked object 
well in the latter half of the sequence (see #40 and #74). IVT, KCF and TGPR drift away to 
the background region at the end (see #74). Our WLSRE method stably tracks the target till 
the end.  

 

Fig. 9. Sample results of all compared trackers on several sequences with rotation. 
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4.4 Evaluation on OTB-50   
In order to make the experiments more convincing, we also run the proposed method on the 
object tracking benchmark (OTB) [22]. The trackers that are compared with our method 
include KCF [15], TGPR [14], VTD [4], DLT [30], ASLA [26], IVT [2], LSST [11], SPT 
[10], CT [7], FCNT [41], and boostingtrack [27]. Precision and success plots are used for the 
evaluation of the performance of all compared trackers. Fig. 10 reports the performance (in 
terms of precision plot, success plot, precision score and success score) of the 12 trackers on 
50 videos. We can observe that our method obtains more satisfying and more promising 
results than holistic models such as LSST, SPT and IVT. 
 

 

Fig. 10. Performance evaluation of the 12 trackers on OTB-50.   

5. Conclusions 
This paper presents a novel tracking algorithm based on weighted local sub-space 
reconstruction error. In this work, we explicitly take partial occlusion and other interference 
factors into account by learning a set of weights for local patches of PCA sub-space 
reconstruction error. Under a generative model, the weights are calculated through the 
structural errors and reflect the spatial similarity between the candidate targets and the 
templates. At the same time, an occlusion-aware template update method is introduced to 
enhance the performance of the tracker. Extensive evaluation demonstrates the effectiveness 
and feasibility of the proposed algorithm. Our future work will focus on integrating effective 
detection modules for persistent tracking. Moreover, a particle selection mechanism will be 
introduced to accelerate our tracker.   
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