• Title/Summary/Keyword: object motion

Search Result 1,042, Processing Time 0.032 seconds

MPEG-7 Texture Descriptor (MPEG-7 질감 기술자)

  • 강호경;정용주;유기원;노용만;김문철;김진웅
    • Journal of Broadcast Engineering
    • /
    • v.5 no.1
    • /
    • pp.10-22
    • /
    • 2000
  • In this paper, we present a texture description method as a standardization of multimedia contents description. Like color, shape, object and camera motion information, texture is one of very important information in the visual part of international standard (MPEG-7) in multimedia contents description. Current MPEG-7 texture descriptor has been designed to fit human visual system. Many psychophysical experiments give evidence that the brain decomposes the spectra into perceptual channels that are bands in spatial frequency. The MPEG-7 texture description method has employed Radon transform that fits with HVS behavior. By taking average energy and energy deviation of HVS channels, the texture descriptor is generated. To test the performance of current texture descriptor, experiments with MPEG-7 Texture data sets of T1 to T7 are performed. Results show that the current MPEG-7 texture descriptor gives better retrieval rate and fast and fast extraction time for texture feature.

  • PDF

Object tracking based on adaptive updating of a spatial-temporal context model

  • Feng, Wanli;Cen, Yigang;Zeng, Xianyou;Li, Zhetao;Zeng, Ming;Voronin, Viacheslav
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5459-5473
    • /
    • 2017
  • Recently, a tracking algorithm called the spatial-temporal context model has been proposed to locate a target by using the contextual information around the target. This model has achieved excellent results when the target undergoes slight occlusion and appearance changes. However, the target location in the current frame is based on the location in the previous frame, which will lead to failure in the presence of fast motion because of the lack of a prediction mechanism. In addition, the spatial context model is updated frame by frame, which will undoubtedly result in drift once the target is occluded continuously. This paper proposes two improvements to solve the above two problems: First, four possible positions of the target in the current frame are predicted based on the displacement between the previous two frames, and then, we calculate four confidence maps at these four positions; the target position is located at the position that corresponds to the maximum value. Second, we propose a target reliability criterion and design an adaptive threshold to regulate the updating speed of the model. Specifically, we stop updating the model when the reliability is lower than the threshold. Experimental results show that the proposed algorithm achieves better tracking results than traditional STC and other algorithms.

Effects of Heat Treatment on Choke Core Properties in $Fe_{78}Si_9B_{13}$ Amorphous Alloys ($Fe_{78}Si_9B_{13}$ 비정질 합금의 초크 코어 특성에 미치는 열처리 효과)

  • 노태환;장완희
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.191-195
    • /
    • 2000
  • With the object of developing a non-gap choke core, effects of annealing in oxygen atmosphere on magnetic properties for Fe$_{78}$Si$_{9}$B$_{13}$ amorphous alloy were investigated. After annealing for 2 hrs at 440 $^{\circ}C$, optimum magnetic properties for choke core were obtained, where the effective permeability was 180 and was almost constant up to several MHz, and the decrease in permeability upon large DC bias current of 12 A or DC bias magnetic field of 8,000 A/m was very little. Moreover the AC magnetic loss was very low as compared to the conventional choke cores. Upon the optimum annealing, the magnetic hysteresis loop was inclined accompanying the increase of coercive force and the appearance of fine crystallites of $\alpha$-Fe phase. The good choke core properties was considered to be due to the suppression of domain boundary motion and domain refinement by the crystallites.

  • PDF

Review on the Computer Simulation Tools for Polymeric Membrane Researches (고분자 분리막 연구를 위한 전산모사 도구 소개)

  • Choi, Chan Hee;Park, Chi Hoon
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.242-251
    • /
    • 2020
  • Computer simulation tools mainly used for polymer materials and polymeric membranes are divided into various fields depending on the size of the object to be simulated and the time to be simulated. The computer simulations introduced in this review are classified into three categories: Quantum mechanics (QM), molecular dynamics (MD), and mesoscale modeling, which are mainly used in computational material chemistry. The computer simulation used in polymer research has different research target for each kind of computational simulation. Quantum mechanics deals with microscopic phenomena such as molecules, atoms, and electrons to study small-sized phenomena, molecular dynamics calculates the movement of atoms and molecules calculated by Newton's equation of motion when a potential or force of is given, and mesoscale simulation is a study to determine macroscopically by reducing the computation time with large molecules by forming beads by grouping atoms together. In this review, various computer simulation programs mainly used for polymers and polymeric membranes divided into the three types classified above will be introduced according to each feature and field of use.

Gaze Effects on Spatial and Kinematic Characteristics in Pointing to a Remembered Target

  • Ryu, Young-Uk;Kim, Won-Dae;Kim, Hyeong-Dong
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.23-29
    • /
    • 2006
  • The purpose of the present study was to examine gaze effects on spatial and kinematic characteristics during a pointing task. Subjects were asked to watch and point to an aimed target (2 mm in diameter) displayed on a vertically mounted board. Four gaze conditions were developed as combinations of "seeing-aiming" in terms of the eye movements: Focal-Focal (F-F), Focal-Fixing (F-X), Fixing-Focal (X-F), and Fixing-Fixing (X-X). Both the home target and an aimed target were presented for 1 second and then were disappeared in F-F and X-F. In X-F and X-X, only an aimed target disappeared after 1 second. Subjects were asked to point (with index finger tip) to an aimed target accurately as soon as the aimed target was removed. A significant main effect of gaze was found (p<.01) for normalized movement time. Peripheral retina targets had significantly larger absolute error compared to central retina targets on the x (medio-lateral) and z (superior-inferior) axes (p<.01). A significant undershooting to peripheral retina targets on the x axis was found (p<.01). F-F and X-F had larger peak velocities compared to F-X and X-X (p<.01). F-F and X-F were characterized by more time spent in the deceleration phase compared to F-X and X-X (p<.01). The present study demonstrates that central vision utilizes a form of on-line visual processing to reach to an object, and thus increases spatial accuracy. However, peripheral vision utilizes a relatively off-line visual processing with a dependency on proprioceptive information.

  • PDF

Non-rigid 3D Shape Recovery from Stereo 2D Video Sequence (스테레오 2D 비디오 영상을 이용한 비정형 3D 형상 복원)

  • Koh, Sung-shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.281-288
    • /
    • 2016
  • The natural moving objects are the most non-rigid shapes with randomly time-varying deformation, and its types also very diverse. Methods of non-rigid shape reconstruction have widely applied in field of movie or game industry in recent years. However, a realistic approach requires moving object to stick many beacon sets. To resolve this drawback, non-rigid shape reconstruction researches from input video without beacon sets are investigated in multimedia application fields. In this regard, our paper propose novel CPSRF(Chained Partial Stereo Rigid Factorization) algorithm that can reconstruct a non-rigid 3D shape. Our method is focused on the real-time reconstruction of non-rigid 3D shape and motion from stereo 2D video sequences per frame. And we do not constrain that the deformation of the time-varying non-rigid shape is limited by a Gaussian distribution. The experimental results show that the 3D reconstruction performance of the proposed CPSRF method is superior to that of the previous method which does not consider the random deformation of shape.

Comparison of Acceleration-Compensating Mechanisms for Improvement of IMU-Based Orientation Determination (IMU기반 자세결정의 정확도 향상을 위한 가속도 보상 메카니즘 비교)

  • Lee, Jung Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.783-790
    • /
    • 2016
  • One of the main factors related to the deterioration of estimation accuracy in inertial measurement unit (IMU)-based orientation determination is the object's acceleration. This is because accelerometer signals under accelerated motion conditions cannot be longer reference vectors along the vertical axis. In order to deal with this issue, some orientation estimation algorithms adopt acceleration-compensating mechanisms. Such mechanisms include the simple switching techniques, mechanisms with adaptive estimation of acceleration, and acceleration model-based mechanisms. This paper compares these three mechanisms in terms of estimation accuracy. From experimental results under accelerated dynamic conditions, the following can be concluded. (1) A compensating mechanism is essential for an estimation algorithm to maintain accuracy under accelerated conditions. (2) Although the simple switching mechanism is effective to some extent, the other two mechanisms showed much higher accuracies, particularly when test conditions were severe.

Gaze Interaction Using Half Blink Selection and The Wearable AR System (반 깜박임 선택을 이용한 응시 상호작용과 착용형 AR 시스템)

  • Park, Hyung-Min;Lee, Jae-Young;Lee, Seok-Han;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.91-100
    • /
    • 2009
  • In this paper, we propose a wearable augmented reality system using gaze interaction. Gaze interaction has been considered to be the potential of easy, natural and fast way of interaction and becomes a suitable way in optical see-through HMD based wearable AR. Our system recognizes user's gaze point, half blink motion and displays the information of object seen by user to HMD. Half blink selection technique avoids the Midas touch problem and represents user's intention correctly. We've developed a AR annotation system and estimated the usability of gaze interaction. The accuracy and robustness of our technique is verified on the experimental results.

An LED Positioning Method Using Image Sensor of a Smart Device (LED 조명과 스마트 디바이스의 이미지 센서를 이용한 실내 측위 기법)

  • Kim, Jae-Hoon;Kim, Byoung-Sup;Jeon, Hyun-Min;Kang, Suk-Yon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.390-396
    • /
    • 2015
  • The drastic growth of mobile communication and spreading of smart phone make the significant attention on Location Based Service. The one of most important things for vitalizations of LBS is the accurate estimating position for mobile object. Focusing on an image sensor deployed in smart phone, we develop a LED based positioning estimation framework. The developed approaches can strengthen the advantages of independent indoor applicability of LED. The estimation of LED based positioning is effectively applied to any indoor environment. We put a focus especially on the algorithmic framework. of image processing of smart phone. From LED lighting, we can obtain a typical signal image which contains the unique positioning information. Furthermore test-bed based on smart phone platform is practically developed and all data have been harvested from the actual measurement of test indoor area. This can approve the practical usefulness of proposed framework.

Dynamic Hand Gesture Recognition Using CNN Model and FMM Neural Networks (CNN 모델과 FMM 신경망을 이용한 동적 수신호 인식 기법)

  • Kim, Ho-Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.95-108
    • /
    • 2010
  • In this paper, we present a hybrid neural network model for dynamic hand gesture recognition. The model consists of two modules, feature extraction module and pattern classification module. We first propose a modified CNN(convolutional Neural Network) a pattern recognition model for the feature extraction module. Then we introduce a weighted fuzzy min-max(WFMM) neural network for the pattern classification module. The data representation proposed in this research is a spatiotemporal template which is based on the motion information of the target object. To minimize the influence caused by the spatial and temporal variation of the feature points, we extend the receptive field of the CNN model to a three-dimensional structure. We discuss the learning capability of the WFMM neural networks in which the weight concept is added to represent the frequency factor in training pattern set. The model can overcome the performance degradation which may be caused by the hyperbox contraction process of conventional FMM neural networks. From the experimental results of human action recognition and dynamic hand gesture recognition for remote-control electric home appliances, the validity of the proposed models is discussed.