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Abstract 
 

Recently, a tracking algorithm called the spatial-temporal context model has been proposed to 
locate a target by using the contextual information around the target. This model has achieved 
excellent results when the target undergoes slight occlusion and appearance changes. However, 
the target location in the current frame is based on the location in the previous frame, which 
will lead to failure in the presence of fast motion because of the lack of a prediction 
mechanism. In addition, the spatial context model is updated frame by frame, which will 
undoubtedly result in drift once the target is occluded continuously. This paper proposes two 
improvements to solve the above two problems: First, four possible positions of the target in 
the current frame are predicted based on the displacement between the previous two frames, 
and then, we calculate four confidence maps at these four positions; the target position is 
located at the position that corresponds to the maximum value. Second, we propose a target 
reliability criterion and design an adaptive threshold to regulate the updating speed of the 
model. Specifically, we stop updating the model when the reliability is lower than the 
threshold. Experimental results show that the proposed algorithm achieves better tracking 
results than traditional STC and other algorithms. 
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1. Introduction 

Object tracking is a fundamental problem in computer vision due to its wide range of 
applications, such as motion recognition, video surveillance and human computer interaction 
[1-2]. The appearance model is a basic element in object tracking [3] because the object could 
suffer from large appearance changes caused by unstable illumination, occlusion and 
deformations of itself. In recent years, many algorithms have been proposed to establish a 
robust appearance model [4-10]. 

Appearance-based tracking algorithms can be divided into two branches, called generative 
and discriminative. Generative algorithms [4-7] pose tracking as matchings of the appearance 
model, and the unsatisfactory speeds in realistic situations limit their applications in the real 
world, while they perform well in a stationary environment. Discriminative algorithms [8-12] 
aim to train a classifier to separate the target from the background or obtain a confidence map. 
Then, the location with the maximum value is selected as the target. However, these 
algorithms discard the spatial relations between the target and the background, which is useful 
for classification. Recently, a novel spatial-temporal-context (STC) algorithm [13] was 
proposed to address the above problem. STC exploits the spatial relations between the target 
and the surrounding background inside a certain area called a local context. The spatial context 
model has been demonstrated to be robust to short-time occlusions because of subtle changes 
in the context between two consecutive frames. However, under the assumption that there is 
no mutation of the target location, STC could undergo failure when the target undergoes fast 
motion because of the lack of a prediction mechanism of the location. Moreover, the tracker is 
prone to drift in the presence of long-term occlusion, target deformation and rotation, which 
tend to contaminate the spatial model as it is updated frame by frame.  

To overcome the above shortcomings, we propose to predict four potential locations in the 
next frame based on the displacement between the two previous frames, followed by 
calculating four confidence maps of the target location. Similarly, the location with the 
maximum value of these four maps is considered to be the new location. Additionally, we 
formulate the reliability of the object location through synthetic consideration of the 
peak-to-sidelobe ratio (PSR) [14] and a smoothness constraint of the confidence map (SCCM) 
[15] between the two consecutive frames. Additionally, an adaptive threshold is proposed to 
control the updating speed of the spatial model, i.e., we stop updating the spatial model once 
the reliability is smaller than the threshold. 

The remainder of this paper is organized as follows: Section 2 gives a brief introduction to 
the STC tracker. The proposed algorithm is presented in detail in Section 3. Section 4 performs 
a series of experiments as well as the analysis. We conclude this paper in Section 5. 

 

2. STC tracking algorithm 
The main idea of the STC algorithm is to establish the spatial-temporal relationships between 
the target and the context. This task lies in calculating a confidence map of the target location 
c(x)=p(x|o). Here, c(x) can be decomposed easily with the Bayes formula: 
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Both x,z∈R2 are position coordinates, and o refers to the existing target. The context feature 
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set is Xc={c(z)=(I(z),z)|z∈Ωc(x*)}, where Ωc(x*) is the local context area that surrounds the 
target center x*. I(z) is the gray value at location z. Evidently, P(x|c(z),o) is defined as follows:  

 

 )()),(|( zxhozcxP sc −=  (2) 
 

Equation (2) models the spatial relations between the target and its context area, where h(·) 
means the expected model, and the superscript ‘sc’ is taken from the first letters of 
‘spatial-context’. To be specific, P(x|c(z),o) means the probability that the center of the target 
is indeed at x, where the context feature c(z) is positioned. The non-radial symmetry of this 
function is propitious for improving the tracker’s accuracy when there exists another object 
that is similar to the target [13]. P(c(z)|o) is the prior probability that characterizes the 
significance of the context z in predicting the target location. P(x|c(z),o) plays a significant 
part in the STC algorithm. 

2.1 Context priori probability and confidence map 
As a metric of the context’s importance for predicting the target location, the context prior 
probability is naturally defined as 
 

 ),()()|)(( *xzwzIozcP −= σ  (3) 
 

where I(·) is the gray value, and 
22 /)( σ

σ
zaezw −= is a Gaussian weighting function with the 

normalization constant ɑ and scale parameter σ. This definition is consistent with the visual 
characteristics of our human eyes, since a context with a closer distance to the current target 
center and a larger gray value would contribute more to the prediction of the target location. 

The confidence map is formulated as 
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where b is a normalization constant, α is the scale parameter, and β regulates the shape of this 
function with 1 in STC. 

2.2 Tracking procedure     
Based on the confidence map and context prior probability, we aim to learn the spatial context 
model. According to Eq. (2), Eq. (3) and Eq. (4), we reformulate Eq. (1) as 
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where ⊗ is a convolution operator. Note that Eq. (5) can be transformed to the frequency 
domain to accelerate the computational process: 
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where F and F-1 denote the FT and IFT operators, respectively. Without loss of generality, 
after the target position is determined in the frame t, we can learn the spatial context model by 
Eq. (6), which can be used to update the spatial context model: 
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where the superscript ‘stc’ is taken from the first letters of ‘spatial-temporal-context’, and ρ is 
the learning rate. The context feature set is constructed when the frame 1+t  arrives, followed 
by calculating a confidence map (note that Eq. (7) is applicable only when 2≥t . When 1=t , 
we initialize the spatio-temporal context model as the spatial context model, i.e., 

stcstc hH 12 = , 
and 

stch1  is computed by Eq. (6). Since 
stc
tH 1+  is used to calculate a confidence map as in Eq. (8) 

and the target location in frame 1 is given, Eq. (8) is used only when the subscript of )(1 xct+  is 
greater than or equals to 2, i.e., 21≥+t . The initial spatio-temporal context model is 2

stcH ): 
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The location with the maximum value is selected as the target location in the frame 1+t :    
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3. Proposed tracking algorithm 

3.1 Location prediction 
It can be seen from Eq. (8) that the context feature set 

c
tX 1+  of the frame 1+t  is constructed 

based on the previous location in frame t in the traditional STC. There will be a large error 
between 

c
tX 1+  and the real context feature set of the frame 1+t  when the target moves rapidly. 

To solve this problem, we first predict 4 possible locations of the target, as illustrated in Fig. 1 
(

1
1+tx , 

2
1+tx , 

3
1+tx , and 

4
1+tx  are 4 predicted locations of the target in the frame 1+t . Note that the 

target in the frame 1+t  is calculated based on only the target location at the frame t, i.e., tx  in 

the original STC, and thus, we set 
1

1+tx  to be the same as tx  to maintain close ties with the 
original STC).  
 

 
Fig. 1. Sketched diagram of the location prediction, where a is the displacement of the previous two 

frames, and b=c=d=a 
 

Four context feature sets are constructed based on these four locations as well as the 
confidence maps. Then, the object location 

*
1+tx  in the 1+t  frame is determined by 
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maximizing these 4 confidence maps: 
 *

1 1arg max(max( ( ))), 1 4 ,i
t tx c x i+ += ≤ ≤  (10) 

where )(1 xci
t+ is represented as 

1 1 1 1( ) ( ) ( ( ) ( )) , 1 4,
t

i stc i
t t t tc x H x I x w x x is+ + + += ⊗ − ≤ ≤  

where 
i
tx 1+  means the i-th predicted location in the frame 1+t , as illustrated in Fig. 1. 

3.2 Adaptive updating of the model 
The fixed learning rate to update the spatial context model in Eq. (7) can easily introduce a 
spatial context model from an unreliable region with the target occluded or the appearance 
changing, as caused by deformation or rotation, which would have a detrimental impact on the 
subsequent frames. As demonstrated in [14], the PSR in the confidence map represents the 
sharpness of the peak, which can be used to measure the reliability of the tracking result, i.e., a 
higher PSR means a more reliable tracking result. In addition, the SCCM proposed in [15] can 
be used to judge whether the target is occluded or not during the tracking. SCCM is defined as 
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where
∧

tf and
∧
−1tf denote the confidence maps of the frames t and 1−t , respectively. Here, ⊕ 

means a shift operation of the confidence map, and Δ denotes the corresponding shift of 
the maximum value in the confidence maps from the frame 1−t  to t.  

Based on the above analysis, we propose a criterion for judging the reliability of the 
confidence map: relt=PSRt/SCCMt. Theoretically speaking, occlusion or rotation can bring a 
low PSR and high SCCM, and thus, rel can respond to occlusion and target rotation in a 
sensitive manner. To verify the validity of rel in real scenes, we select three typical fragments 
under the conditions of target rotation, occlusion and normal state, where the rel value of each 
frame is visualized as follows: 

 
Fig. 2. Reliability of some frames 

 
Apparently, the target state can be reflected by the rel value (see decreasing rel on #171, 

#425 accompanied by rotation and occlusion).   
Ideally, we should stop updating the spatial context model when the reliability is not 

sufficiently high, such as in #171 and #425, as shown in Fig. 2. Therefore, we propose to set a 
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threshold to control whether the model can be updated normally or not. The new mechanism 
for updating the spatial context model can be formulated as 
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It is important to set an appropriate threshold. Obviously, a higher threshold can slow down 
the process of model updating and vice versa. An adaptive threshold based on the reliability 
discussed above is proposed as follows: 
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The numerator denotes the standard deviation of the reliability values of the m frames prior 
to the current frame, and the denominator denotes the mean values of the reliability values of 
the m/2 frames prior to the current frame. 

As is shown in Fig. 3, there are 4 possible trends of the rel value in m consecutive frames 
prior to the current frame: 

 

 
Fig. 3. Four trends of the rel values 

 

(a) There are no occlusion or appearance changes of the target, which can be reflected by 
the stability of the rel values at a high level, and we must update the spatial model as usual. A 
small threshold is beneficial in such a case according to the relationship of the threshold and 
updating speed, as mentioned above. We note that the standard deviation of the rel value of 
these m frames appears to be small, while the mean value of rel of the latter m/2 frame appears 
to be relatively large, and thus, a small threshold that is consistent with our expectation can be 
calculated by Eq. (13). 

(b) There could exist occlusion or appearance changes of the target, which can be reflected 
by the stability of the rel values at a low level, and we must stop updating the model. A large 
threshold is beneficial in such a case. We note that the standard deviation of the rel value of 
these m frames appears to be small as well as the mean value. Thus, a relatively large threshold 
that is consistent with our expectation can be calculated by Eq. (13). 

(c) Occlusion could be gradually disappearing from the target or the target’s appearance 
begins to gradually stabilize downward, which can be reflected by the growing values of rel. A 
small threshold is beneficial to adapt to the changing scene. We note that the standard 
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deviation of the rel values of these m frames appears to be large, while the mean value of the 
latter m/2 frames becomes larger, also. Thus, a small threshold that is consistent with our 
expectation can be calculated by Eq. (13). 

(d) There could be something that occludes the target gradually, which can be reflected by 
the declining values of rel, as shown in Fig. 2. A large threshold is beneficial to prevent the 
model from being polluted. We note that the standard deviation of the rel values of these m 
frames appears to be large, while the mean value of rel of the latter m/2 frames appears to be 
relatively small. Thus, a large threshold that is consistent with our expectation can be 
calculated by Eq. (13). 

3.3 Framework of the proposed algorithm 
According to the above discussion, the tracking algorithm based on adaptive updating of the 
spatial-temporal context model (AU-STC) can be summarized as follows: 
 

Algorithm 1.  AU-STC algorithm 

Inputs: Target location 
*

1−tx , spatial-temporal model 
stc
tH . 

1. Predict four target locations and calculate the corresponding four confidence maps; 

2. The location with the maximum value is selected as the target location 
*
tx ; 

3. Learn the spatial context model 
sc
th  by Eq. (6); 

4. Calculate the reliability of the confidence map relt and the threshold thresholdt using 
Eq. (13); 

5. Update the spatial-temporal-model 
stc
tH 1+  by Eq. (12); 

Outputs: Target location 
*
tx , spatial-temporal model 

stc
tH 1+ , then take them as inputs. 

4. Experiments and analysis 
We evaluate the proposed algorithm using 30 (20 from [16], 6 from CAVIAR and 4 from 
VIVID datasets) public video sequences with challenging factors, including heavy occlusion, 
fast motion, non-rigid deformation and motion blur. We compare the proposed algorithm with 
traditional STC, compressive tracking (CT) [9] and Multiple Instance Learning (MIL) [12]. 
The parameters of the proposed algorithm are fixed for all the experiments. For other trackers, 
we use the original source code provided, in which the parameters of each tracker are tuned to 
obtain the best results. All our experiments are performed by using MATLAB R2015a on a 3.2 
GHz Intel Core i5 PC with 4 GB RAM. 

4.1 Parameter settings 
The size of the context region is initially set to twice the target size. The parameters of the map 
function are set to α = 2.25 and β = 1. The learning parameter ρ = 0.075, which is the same as 
in the traditional STC. The value of m in Eq. (13) is set to 5. 

4.2 Qualitative evaluation 
Some tracking results of different trackers are shown in Figs. 4 to 6. In these figures, red, blue, 
green and yellow denote the tracking results of our algorithm, MIL, STC and CT, respectively. 

4.2.1 Long-term occlusion 
The target in FaceOcc2 (Fig. 4(a)) experienced a long-term occlusion and a posture change 
before #707. Moreover, the target is occluded from #707 for a long time, and STC has lost the 
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target (see #750). In Suv (Fig. 4(b)), MIL, STC and CT all failed after the target is occluded 
(see #571), whereas our algorithm can track the target until the last frame. Note that the haar 
feature used in CT easily falls on the occluded area, and the spatial context between the target 
and occluding object in STC could lead to cumulative failure. In Girl (Fig. 4(c)), MIL and CT 
lose the target after target rotation (see #80), and STC starts to track the occluding object 
unrealistically (see #470). In general, it can be seen that the context-based method (STC and 
our algorithm) has a natural advantage over unreliable haar features in such a low-resolution 
image. The target in Caviar1 (Fig. 4(d)) experienced a long-term occlusion and background 
clutter from #100. Moreover, the target is occluded from #169 for the second time, and we can 
see an unsatisfactory result in MIL and CT but not in our algorithm and STC.  

 
 
Fig. 4. Screenshots of the tracking results with long-term occlusion. In FaceOcc2, the yellow rectangle 
superposes the blue rectangle in #150, #270. The red rectangle superposes the green rectangle in #360, 
#500. In Suv, the red rectangle superposes the green rectangle in #170, #517, and the green rectangle 
has been lost in #686, #786. In Girl, the red rectangle superposes the green rectangle in #80, #100. In 

Caviar1, the red rectangle superposes the green rectangle in these five frames. 

4.2.2 Deformation and rotation 
In Skater (Fig. 5(a)), the target undergoes a 90 degree rotation and deformation 6 times (see 
#40, #62, #82, #100, #112, #125 in the original sequence). It can be seen that CT performs 
better than STC and our algorithm at the 6th rotation. This result occurs because the high 
frequency of rotation can be easily caught by the combination of 50 features in CT, while the 
context-based methods treat each context equally so that they cannot adapt to dramatic 
rotation well. However, we see that the adaptive threshold used in our algorithm obtains better 
results compared with STC. In shop (Fig. 5(b)), the target shares the same color with the 
background and rotates at the same time (see the 2th and 4th image); only our algorithm works 
well, and the other three trackers all failed from the beginning. Obviously, MIL, STC and our 
algorithm all perform well in the sequences MountainBike and Bolt (Fig. 5(c)), as the object 
rotates at a low frequency except for CT. 

(a) FaceO
cc2 

(b) Suv 
(c) G

irl 
(d) C

aviar1 
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Fig. 5. Screenshots of the tracking results with deformation and rotation. In MountainBike, the red 
rectangle superposes the green rectangle in #40, #80, #190. In Bolt, the red rectangle superposes the 

green rectangle in #190, #247, #293. 

4.2.3 Fast motion and Motion Blur  
In BlurFace (Fig. 6(a)), with the target moving rapidly through the whole process, MIL and 
CT begin to lose the target from #150, and the same occurs with STC from #390. However, 
our algorithm performs accurately for the entire duration. In Dog (Fig. 6(b)), with the target 
moving rapidly through the whole process, CT and our algorithm both perform more 
accurately than STC and MIL. In Fish (Fig. 6(c)), the target undergoes fast jitter of the camera 
and illumination changes, yet little changes in the spatial context prompts similar 
performances of STC and our algorithm. Nevertheless, CT loses the target (see #60) because 
the haar feature is sensitive to illumination. In Deer (Fig. 6(d)), the target starts to move 
quickly at the beginning, and the other three trackers all fail for the reason that a fixed radius 
for generating candidate samples cannot adapt to the large displacement. The mechanism for 
location prediction of our algorithm will remedy this error.  

 
Fig. 6. Screenshots of the tracking results with fast motion and motion blur. In BlurFace, the red rectangle 
superposes the green rectangle in frames #67, #150, #262. In Fish, the red rectangle superposes the green 

rectangle in #60, #118, #215 and #312. In Deer, the green rectangle has been lost in #28, #45, #63 and #71. 

(a) Skater 
(b) Shop 

(a) BlurFace 
(b) D

og 
(c) Fish 

(d) D
eer 

(c) M
ountainBike and B

olt 
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4.3 Quantitative evaluation   
Based on the above discussion, three evaluation criteria are employed to quantitatively assess 
the performances of the trackers: the center location error (CLE), overlap rate (OR), and 
success rate (SR) [16]. The CLE is defined as the Euclidean distance between the tracked 
bounding box and the ground truth bounding box. The OR is defined as 

)(/)( gRtRareagRtRarea ∪∩
, where tR  is a tracked bounding box, and gR  is the ground 

truth bounding box in a frame. SR is used to illustrate the percentage of frames whose OR is 
higher than a threshold (usually 0.5) in a sequence.  

CLE, OR, SR of these Four trackers for the 30 sequences are shown in Tables 1-3 
according to the attributes defined in Section 4.2 (the bold font in the tables denotes the best 
tracker for the corresponding sequence, and the total number of evaluated frames is 18379). 
The reasons for our algorithm’s superiority can been seen as follows: first the prediction 
mechanism of the target location enlarges the search area of the target in the next frame, which 
is beneficial in tracking a fast-moving target. Second, when the target is occluded or rotated, a 
large threshold that limits the updating speed of the spatial context model is obtained based on 
the target reliability, which prevents the introduction of an unreliable model to contaminate a 
normal model.  
 
 

Table 1. Center location error (CLE) (in pixels) and average frame per second (FPS) 
Attributes Sequences MIL CT STC Ours 

 FaceOcc2 21 15 22 9 
 Suv 73 69 173 4 
 Girl 16 17 9 2 

Long-term Caviar1 96 22 4 3 
occlusion Caviar2 74 59 4 4 

 RedTeam 10 13 9 8 
 Coke 48 36 17 15 
 FaceOcc1 38 23 198 32 
 David3 30 90 10 9 
 Skater 11 18 23 14 
 Shop 88 73 52 5 
 MountainBike 7 212 7 7 
 Bolt2 9 76 6 6 

Deformation Egtest01 9 7 6 5 
and rotation Egtest02 16 17 12 11 

 Egtest03 230 226 35 12 
 Coupon 20 18 2 2 
 MeetWalkTogethe

 
60 21 13 11 

 David2 16 79 4 2 
 TwoEnterShop 23 135 10 11 
 BlurFace 153 108 114 5 

Fast motion Dog 31 17 21 16 
and Motion 

bl Bl  
Fish 17 28 3 3 

Blur Deer 60 232 400 7 
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 BlurCar1 132 118 120 8 
 ClifBar 32 11 41 15 
 CarDark 45 120 2 2 

Illumination Crowds 5 402 5 4 
Variation Trellis 80 59 40 20 

 LeftBox 12 11 11 9 
 Average CLE 48 77 45 9 

   Average FPS 9 30 39 33 
 
 

Table 2. Overlap rate (OR) 
Attributes Sequences MIL CT STC Ours 

 FaceOcc2 0.64 0.7
0 

0.71 0.79 
 Suv 0.25 0.2

6 
0.52 0.84 

 Girl 0.35 0.2
8 

0.56 0.72 
Long-term  Caviar1 0.23 0.5

0 
0.71 0.71 

occlusion Caviar2 0.22 0.3
0 

0.58 0.59 
 RedTeam 0.61 0.6

1 
0.73 0.71 

 Coke 0.25 0.2
7 

0.50 0.53 
 FaceOcc1 0.54 0.7

1 
0.21 0.65 

 David3 0.50 0.2
6 

0.66 0.70 
 Skater 0.61 0.5

 
0.52 0.63 

 Shop 0.10 0.0
4 

0.10 0.62 
 MountainBike 0.70 0.1

4 
0.72 0.72 

 Bolt2 0.62 0.2
8 

0.68 0.68 
Deformation  Egtest01 0.54 0.5

5 
0.58 0.64 

and rotation Egtest02 0.48 0.5
7 

0.59 0.59 
 Egtest03 0.25 0.2

8 
0.40 0.59 

 Coupon 0.60 0.6
0 

0.92 0.92 
 MeetWalkTogether 0.09 0.3

6 
0.44 0.51 

 David2 0.38 0.0
0 

0.74 0.81 
 TwoEnterShop 0.24 0.1

6 
0.48 0.55 

 BlurFace 0.17 0.2
 

0.52 0.85 
Fast motion Dog 0.2 0.5

1 
0.52 0.59 

and Motion 
Bl  

Fish 0.53 0.4
3 

0.83 0.82 
Blur Deer 0.36 0.0

3 
0.04 0.75 

 BlurCar1 0.11 0.1
8 

0.50 0.80 
 ClifBar 0.23 0.5

0 
0.27 0.53 

 CarDark 0.15 0.0
0 

0.79 0.80 
Illumination  Crowds 0.70 0.0

1 
0.63 0.73 

Variation Trellis 0.26 0.3
0 

0.49 0.57 
 LeftBox 0.54 0.6

2 
0.57 0.63 

 Average OR 0.38 0.3
4 

0.55 0.68 
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Table 3. Success rate (SR) (%) 
Attributes Sequences MIL CT STC Ours 

 FaceOcc2 87 96 89 100 
 Suv 14 26 57 98 
 Girl 23 13 75 97 

Long-term  Caviar1 30 37 98 98 
occlusion Caviar2 27 38 61 61 

 RedTeam 30 47 60 60 
 Coke 8 15 48 56 
 FaceOcc1 61 97 25 85 
 David3 64 30 88 91 
 Skater 82 70 57 88 
 Shop 6 3 12 84 
 MountainBike 100 17 96 97 
 Bolt2 88 26 100 100 

Deformation Egtest01 47 43 62 56 
and rotation Egtest02 42 65 60 60 

 Egtest03 20 27 
 
 

30 52 
 Coupon 84 87 100 100 
 MeetWalkTogether 3 13 35 50 
 David2 30 0 99 100 
 TwoEnterShop 6 5 37 53 
 BlurFace 20 24 63 100 

Fast motion Dog 21 65 62 65 
and Motion 

Bl  
Fish 53 23 100 100 

Blur Deer 48 4 4 100 
 BlurCar1 5 11 58 99 

 ClifBar 4 42 31 61 
 CarDark 10 0 99 100 

Illumination  Crowds 90 0 81 99 
Variation Trellis 26 32 65 74 

 LeftBox 60 83 69 86 
 Average SR 39 34 64 82 

5. Conclusions 
In this paper, we propose to predict four possible target locations where four confidence maps 
are calculated. In addition, a reliability criterion of the target location with a threshold is 
introduced for updating the spatial model adaptively. We analyze four trends of reliability 
values, based on which an adaptive threshold is determined to control whether the spatial 
context model is updated or not. These two improvements result in a better performance in 
terms of fast motion, occlusion, deformation and so on, and  experimental results show that the 
SR of our algorithm is 28% higher than the traditional STC.  

Except the above advantages, we find that our algorithm cannot adapt to drastic changing 
target size well. Moreover, when a target disappears and then re-appears after a long period of 
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time, our algorithm will perform disappointingly because of a lack of re-detection mechanism. 
Our future work will focus on introducting a robust scale adaptation scheme for tracking an 
object in varying sizes. In addition, we will explore efficient detection modules for persistent 
tracking.  
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