• 제목/요약/키워드: object matching

검색결과 642건 처리시간 0.023초

An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition

  • Choi, Seongrim;Lee, Hwanyong;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.251-254
    • /
    • 2016
  • An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.

객체추적을 위한 적응적 정합 블록을 이용한 블록정합 알고리즘 (Block Matching Algorithm Using an Adaptive Matching Block for Object Tracking)

  • 김진태;안수홍;오정수
    • 한국정보통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.455-461
    • /
    • 2011
  • 블록정합 기법을 이용한 객체추적에서 크기가 다양하고 수시로 변하는 객체를 추적하기 위해 고정 정합블록을 사용하는 것은 적합하지 못하다. 본 논문은 동적 환경을 위한 적응적 정합블록을 정의하고, 이를 위한 블록정합 알 고리즘을 제안한다. 정합블록은 $42{\times}42$ 화소의 넓은 영역에 $10{\times}10$ 화소의 주 블록과 $6{\times}6$ 화소의 부 블록 8개로 구성되고, 영역 중심에 위치한 주 블록은 객체 블록으로 사용되고, 영역의 외곽에 위치한 부 블록은 객체블록을 위한 후보 블록으로 사용된다. 제안된 알고리즘은 부 블록에서 이전 10 프레임의 움직임 벡터를 이용해 객체블록을 추출하고, 주 블록과 추출된 객체블록을 이용해 블록정합을 수행한다. 성능 평가를 위한 실험들은 제안된 알고리즘이 정합블록에서 유효한 객체블록만을 적절히 추출하고, 자유로운 움직임을 갖는 객체를 영상의 중심 영역에 유지시켜 주는 것을 보여주고 있다.

Joint Template Matching Algorithm for Associated Multi-object Detection

  • Xie, Jianbin;Liu, Tong;Chen, Zhangyong;Zhuang, Zhaowen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권1호
    • /
    • pp.395-405
    • /
    • 2012
  • A joint template matching algorithm is proposed in this paper to reduce the high rate of miss-detection and false-alarm caused by the traditional template matching algorithm during the process of multi-object detection. The proposed algorithm can reduce the influence on each object by matching all objects together according to the correlation information among different objects. Moreover, the rate of miss-detection and false-alarm in the process of single-template matching is also reduced based on the algorithm. In this paper, firstly, joint template is created from the information of relative positions among different objects. Then, matching criterion according to normalized cross correlation is generated for multi-object matching. Finally, the proposed algorithm is applied to the detection of watermarks in bill. The experiments show that the proposed algorithm has lower miss-detection and false-alarm rate comparing to the traditional NCC algorithm during the process of multi-object detection.

AN OBJECT TRACKING METHOD USING ADAPTIVE TEMPLATE UPDATE IN IR IMAGE SEQUENCE

  • Heo, Pyeong-Gang;Lee, Hyung-Tae;Suk, Jung-Youp;Jin, Sang-Hun;Park, Hyun-Wook
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.174-177
    • /
    • 2009
  • In object tracking, the template matching methods have been developed and frequently used. It is fast enough, but not robust to an object with the variation of size and shape. In order to overcome the limitation of the template matching method, this paper proposes a template update technique. After finding an object position using the correlation-based adaptive predictive search, the proposed method selects blocks which contain object's boundary. It estimates the motion of boundary using block matching, and then updates template. We applied it to IR image sequences including an approaching object. From the experimental results, the proposed method showed successful performance to track object.

  • PDF

퍼지 클러스터링과 스트링 매칭을 통합한 형상 인식법 (Pattern Recognition Method Using Fuzzy Clustering and String Matching)

  • 남원우;이상조
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2711-2722
    • /
    • 1993
  • Most of the current 2-D object recognition systems are model-based. In such systems, the representation of each of a known set of objects are precompiled and stored in a database of models. Later, they are used to recognize the image of an object in each instance. In this thesis, the approach method for the 2-D object recognition is treating an object boundary as a string of structral units and utilizing string matching to analyze the scenes. To reduce string matching time, models are rebuilt by means of fuzzy c-means clustering algorithm. In this experiments, the image of objects were taken at initial position of a robot from the CCD camera, and the models are consturcted by the proposed algorithm. After that the image of an unknown object is taken by the camera at a random position, and then the unknown object is identified by a comparison between the unknown object and models. Finally, the amount of translation and rotation of object from the initial position is computed.

Object Tracking using Adaptive Template Matching

  • Chantara, Wisarut;Mun, Ji-Hun;Shin, Dong-Won;Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Template matching is used for many applications in image processing. One of the most researched topics is object tracking. Normalized Cross Correlation (NCC) is the basic statistical approach to match images. NCC is used for template matching or pattern recognition. A template can be considered from a reference image, and an image from a scene can be considered as a source image. The objective is to establish the correspondence between the reference and source images. The matching gives a measure of the degree of similarity between the image and the template. A problem with NCC is its high computational cost and occasional mismatching. To deal with this problem, this paper presents an algorithm based on the Sum of Squared Difference (SSD) and an adaptive template matching to enhance the quality of the template matching in object tracking. The SSD provides low computational cost, while the adaptive template matching increases the accuracy matching. The experimental results showed that the proposed algorithm is quite efficient for image matching. The effectiveness of this method is demonstrated by several situations in the results section.

면 법선 영상 기반형 3차원 물체인식에서의 새로운 매칭 기법 (A New Matching Strategy for SNI-based 3-D Object Recognition)

  • 박종훈;최종수
    • 전자공학회논문지B
    • /
    • 제30B권7호
    • /
    • pp.59-69
    • /
    • 1993
  • In this paper, a new matching strategy for 3-D object recognition, based on the Surface Normal Images (SNIs), is proposed. The matching strategy using the similarity decision function [9,10] lost the efficiency and the reliability of matching, because all features of models within model base must be compared with the scene object features, and the weights of the attributes of features is given by heuristic manner. However, the proposed matching strategy can solve these problems by using a new approach. In the approach, by searching the model base, a model object whose features are fully matched with the features of sceme object is selected. In this paper, the model base is constructed for the total 26 objects, and systhetic and real range images are used in the test of the system operation. Experimental result is performed to show the possibility that this strategy can be effectively used for the SNI based recognition.

  • PDF

Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식 (Object Recognition Using Hausdorff Distance and Image Matching Algorithm)

  • 김동기;이완재;강이석
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

Robust hausdorff 거리 척도를 이용한 물체 정합 알고리듬 (Object matching algorithms using robust hausdorff distance measure)

  • 권오규;심동규;박래홍
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.93-101
    • /
    • 1997
  • A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper proposes three object matching algorithm using robust HD measures based on M-estimation, least trimmed square (LTS), and .alpha.-trimmed mean methods, which are more efficient than the conventional HD measures. By computer simulation with synthetic and real images, the matching performance of the conventional HD smeasures and proposed' robust ones is compared.

  • PDF

패턴매칭을 이용한 형상측정 데이터의 결합 (The Alignment of Measuring Data using the Pattern Matching Method)

  • 조택동;이호영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2000
  • The measuring method of large object using the pattern matching is discussed in the paper. It is hard and expensive to get the complete 3D data when the object is large or exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method. The point pattern matching method and transform matrix algorithm are used for aligning. The laser slit beam and CCD camera is applied for experimental measurement. Visual C++ on Window98 is implemented in processing the algorithm.

  • PDF