• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.042 seconds

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

Road Sign Recognition and Geo-content Creation Schemes for Utilizing Road Sign Information (도로표지 정보 활용을 위한 도로표지 인식 및 지오콘텐츠 생성 기법)

  • Seung, Teak-Young;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.252-263
    • /
    • 2016
  • Road sign is an important street furniture that gives some information such as road conditions, driving direction and condition for a driver. Thus, road sign is a major target of image recognition for self-driving car, ADAS(autonomous vehicle and intelligent driver assistance systems), and ITS(intelligent transport systems). In this paper, an enhanced road sign recognition system is proposed for MMS(Mobile Mapping System) using the single camera and GPS. For the proposed system, first, a road sign recognition scheme is proposed. this scheme is composed of detection and classification step. In the detection step, object candidate regions are extracted in image frames using hybrid road sign detection scheme that is based on color and shape features of road signs. And, in the classification step, the area of candidate regions and road sign template are compared. Second, a Geo-marking scheme for geo-content that is consist of road sign image and coordinate value is proposed. If the serious situation such as car accident is happened, this scheme can protect geographical information of road sign against illegal users. By experiments with test video set, in the three parts that are road sign recognition, coordinate value estimation and geo-marking, it is confirmed that proposed schemes can be used for MMS in commercial area.

YOLO-based lane detection system (YOLO 기반 차선검출 시스템)

  • Jeon, Sungwoo;Kim, Dongsoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.464-470
    • /
    • 2021
  • Automobiles have been used as simple means of transportation, but recently, as automobiles are rapidly becoming intelligent and smart, and automobile preferences are increasing, research on IT technology convergence is underway, requiring basic high-performance functions such as driver's convenience and safety. As a result, autonomous driving and semi-autonomous vehicles are developed, and these technologies sometimes deviate from lanes due to environmental problems, situations that cannot be judged by autonomous vehicles, and lane detectors may not recognize lanes. In order to improve the performance of lane departure from the lane detection system of autonomous vehicles, which is such a problem, this paper uses fast recognition, which is a characteristic of YOLO(You only look once), and is affected by the surrounding environment using CSI-Camera. We propose a lane detection system that recognizes the situation and collects driving data to extract the region of interest.

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

A Study on Improvement of Pedestrian Care System for Cooperative Automated Driving (자율협력주행을 위한 보행자Care 시스템 개선에 관한 연구)

  • Lee, Sangsoo;Kim, Jonghwan;Lee, Sunghwa;Kim, Jintae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2021
  • This study is a study on improving the pedestrian Care system, which delivers jaywalking events in real time to the autonomous driving control center and Autonomous driving vehicles in operation and issues warnings and announcements to pedestrians based on pedestrian signals. In order to secure reliability of object detection method of pedestrian Care system, the inspection method combined with camera sensor with Lidar sensor and the improved system algorithm were presented. In addition, for the occurrence events of Lidar sensors and intelligent CCTV received during the operation of autonomous driving vehicles, the system algorithm for the elimination of overlapping events and the improvement of accuracy of the same time, place, and object was presented.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.

Traffic Sign Area Detection System Based on Color Processing Mechanism of Human (인간의 색상처리방식에 기반한 교통 표지판 영역 추출 시스템)

  • Cheoi, Kyung-Joo;Park, Min-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.63-72
    • /
    • 2007
  • The traffic sign on the road should be easy to distinguishable even from far, and should be recognized in a short time. As traffic sign is a very important object which provides important information for the drivers to enhance safety, it has to attract human's attention among any other objects on the road. This paper proposes a new method of detecting the area of traffic sign, which uses attention module on the assumption that we attention our gaze on the traffic sign at first among other objects when we drive a car. In this paper, we analyze the previous studies of psycophysical and physiological results to get what kind of features are used in the process of human's object recognition, especially color processing, and with these results we detected the area of traffic sign. Various kinds of traffic sign images were tested, and the results showed good quality(average 97.8% success).

Real-Time Object Recognition Using Local Features (지역 특징을 사용한 실시간 객체인식)

  • Kim, Dae-Hoon;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.224-231
    • /
    • 2010
  • Automatic detection of objects in images has been one of core challenges in the areas such as computer vision and pattern analysis. Especially, with the recent deployment of personal mobile devices such as smart phone, such technology is required to be transported to them. Usually, these smart phone users are equipped with devices such as camera, GPS, and gyroscope and provide various services through user-friendly interface. However, the smart phones fail to give excellent performance due to limited system resources. In this paper, we propose a new scheme to improve object recognition performance based on pre-computation and simple local features. In the pre-processing, we first find several representative parts from similar type objects and classify them. In addition, we extract features from each classified part and train them using regression functions. For a given query image, we first find candidate representative parts and compare them with trained information to recognize objects. Through experiments, we have shown that our proposed scheme can achieve resonable performance.

Development of an Image Data Augmentation Apparatus to Evaluate CNN Model (CNN 모델 평가를 위한 이미지 데이터 증강 도구 개발)

  • Choi, Youngwon;Lee, Youngwoo;Chae, Heung-Seok
    • Journal of Software Engineering Society
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • As CNN model is applied to various domains such as image classification and object detection, the performance of CNN model which is used to safety critical system like autonomous vehicles should be reliable. To evaluate that CNN model can sustain the performance in various environments, we developed an image data augmentation apparatus which generates images that is changed background. If an image which contains object is entered into the apparatus, it extracts an object image from the entered image and generate s composed images by synthesizing the object image with collected background images. A s a method to evaluate a CNN model, the apparatus generate s new test images from original test images, and we evaluate the CNN model by the new test image. As a case study, we generated new test images from Pascal VOC2007 and evaluated a YOLOv3 model with the new images. As a result, it was detected that mAP of new test images is almost 0.11 lower than mAP of the original test images.