DOI QR코드

DOI QR Code

YOLO-based lane detection system

YOLO 기반 차선검출 시스템

  • Jeon, Sungwoo (Department of Computer Engineering, Paichai University) ;
  • Kim, Dongsoo (Department of Computer Engineering, Paichai University) ;
  • Jung, Hoekyung (Department of Computer Engineering, Paichai University)
  • Received : 2020.11.26
  • Accepted : 2020.12.07
  • Published : 2021.03.31

Abstract

Automobiles have been used as simple means of transportation, but recently, as automobiles are rapidly becoming intelligent and smart, and automobile preferences are increasing, research on IT technology convergence is underway, requiring basic high-performance functions such as driver's convenience and safety. As a result, autonomous driving and semi-autonomous vehicles are developed, and these technologies sometimes deviate from lanes due to environmental problems, situations that cannot be judged by autonomous vehicles, and lane detectors may not recognize lanes. In order to improve the performance of lane departure from the lane detection system of autonomous vehicles, which is such a problem, this paper uses fast recognition, which is a characteristic of YOLO(You only look once), and is affected by the surrounding environment using CSI-Camera. We propose a lane detection system that recognizes the situation and collects driving data to extract the region of interest.

자동차는 단순한 이동 수단으로 사용되었지만 최근 지능화 및 스마트화가 급속하게 진행되고 자동차 선호도가 증가하면서 운전자의 편의 및 안전 등 고성능 기능을 요구하면서 IT 기술 융합 연구가 진행되고 있다. 이로 인해 자율주행과 반자율주행 자동차가 개발되고 이러한 기술들은 주변 환경 문제로 인하여 차선 이탈 경우와 자율주행 자동차에서 판단하지 못하는 상황이 생기고 차선 검출기에서는 차선을 인식하지 못하는 경우가 있다. 이러한 문제점인 자율주행 자동차의 차선검출 시스템의 차선 이탈에 대한 성능을 향상하기 위해 본 논문에서는 YOLO(You only look once)의 특성인 빠른 인식을 사용하고 CSI- Camera를 사용하여 주변 환경으로부터 영향을 받는 상황을 인지하고 주행 데이터 수집하여 관심 영역을 추출하는 차선검출 시스템을 제안한다.

Keywords

References

  1. Y. H. Shim and S. H. Kwon, "Trends of Standardization of Autonomous Driving System," Auto Journal, vol. 41, no. 9, pp. 63-66, Sep. 2019.
  2. H. G. Kim and G. S. Heo, "Autonomous Driving Technology Rese arch Trends and Prospects," Journal of the Korean Institute of Communication Sciences, vol. 35, no. 5, pp. 3-12, Apr. 2018.
  3. B. Y. Lee, "Trends and Prospects of Technology Development for Domestic and Overseas Self-driving Vehicles," Journal of the Korean Institute of Communication Sciences, vol. 33, no. 4, pp. 10-16, Mar. 2016.
  4. M. H. Ok, "Development of a longitudinal autonomous driving sup port system simulator for ADAS driving vehicles on highways," Journal of Korea Information Technology Society, vol. 17, no. 11, pp. 27-35, Nov. 2019. https://doi.org/10.14801/jkiit.2019.17.11.27
  5. V. Milanes and S. E. Shladover, "Modeling cooperative and autonomous adaptive cruise control dynamic responses using experimental data," Transportation Research. Part C, Elsevier, vol. 48, pp. 285-300, Nov. 2014. https://doi.org/10.1016/j.trc.2014.09.001
  6. B. J. Kim and S. B. Lee, "A Study one valuation Method of the Adaptive Cruise Control," Journal of Drive and Control, vol. 14, no. 3, pp. 8-17, Sep. 2017. https://doi.org/10.7839/ksfc.2017.14.3.008
  7. S. B. Jeon, Y. T. Han, D. M. Seo, and I. B. Jung, "Improved Real-Time Variable Speed Limits for a Stable Controlling of the Freeway," KIISE Transactions on Computing Practices, vol. 22, no. 9, pp. 405-418, Sep. 2016. https://doi.org/10.5626/KTCP.2016.22.9.405
  8. S. Y. Lee, J. M. Kim, C. M. Ji, and M. P. Hong, "A Study on DoS Attack and Response Technology Trends in V2V Communication Environment of Self-driving Vehicles," Journal of Information Security Society, vol. 30, no. 2, pp. 41-48, Apr. 2020.