• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.028 seconds

Construction of Oil-Spill Warning System based on Remote Sensing/Numerical Model and Its Application to the Natural Resource Damage Assessment and Restoration System

  • Goto, Shintaro;Kim, Sang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.243-248
    • /
    • 1999
  • From the lessons after the Nakhodka oil-spill in Jan. 1997, oil slick detection by using remote sensing data and assimilating the data to the simulation program is important for monitoring the oil-drift pattern. For this object, we are going to construct the oil-spill warning system for estimating the oil-drift pattern using remotesensing/numerical simulation Model. Additionally we plan to use this system for restorating oil-spill damage domestically, such as estimating the ecological damage and making the priority fur restorating the oil-spilled shoreline. This report is intended to summarize the role of geo-informatics in the oil spill accident by not only paying attention to the effect of information provision/information management via the map, but also reporting the interim result in part based on the details discussed in the processes of recovery support and environmental impact assessment during the Nakhodka's accident.

  • PDF

On the Development of Robot based Automation System for Loading Cargo in Small and Medium Sub Terminals

  • Park, Jae Min;Lee, Sang Min;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.90-96
    • /
    • 2021
  • The logistics market is continuously growing due to the development of technology and the growth of the online market. In addition, the social atmosphere that emphasizes non-face-to-face due to the pandemic situation is accelerating the growth of logistics. Delivery of goods ordered online requires delivery process through courier worker. In order for the courier worker to ship the product, the work of loading the product on the truck must be preceded. The accident caused by such delivery and loading work is increasing and it is emerging as a social problem. This study proposes a robot-based automated loading system to efficiently handle the increasing volume of courier service and to construct a more efficient and safe working environment by replacing the physical labor that was overloaded to courier workers. The proposed system replaces the loading of the courier worker and proposes the optimal loading function through the automation system.

Development of a Vision Based Fall Detection System For Healthcare (헬스케어를 위한 영상기반 기절동작 인식시스템 개발)

  • So, In-Mi;Kang, Sun-Kyung;Kim, Young-Un;Lee, Chi-Geun;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.279-287
    • /
    • 2006
  • This paper proposes a method to detect fall action by using stereo images to recognize emergency situation. It uses 3D information to extract the visual information for learning and testing. It uses HMM(Hidden Markov Model) as a recognition algorithm. The proposed system extracts background images from two camera images. It extracts a moving object from input video sequence by using the difference between input image and background image. After that, it finds the bounding rectangle of the moving object and extracts 3D information by using calibration data of the two cameras. We experimented to the recognition rate of fall action with the variation of rectangle width and height and that of 3D location of the rectangle center point. Experimental results show that the variation of 3D location of the center point achieves the higher recognition rate than the variation of width and height.

  • PDF

Development of Hand-drawn Clothing Matching System Based on Neural Network Learning (신경망 모델을 이용한 손그림 의류 매칭 시스템 개발)

  • Lim, Ho-Kyun;Moon, Mi-Kyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1231-1238
    • /
    • 2021
  • Recently, large online shopping malls are providing image search services as well as text or category searches. However, in the case of an image search service, there is a problem in that the search service cannot be used in the absence of an image. This paper describes the development of a system that allows users to find the clothes they want through hand-drawn images of the style of clothes when they search for clothes in an online clothing shopping mall. The hand-drawing data drawn by the user increases the accuracy of matching through neural network learning, and enables matching of clothes using various object detection algorithms. This is expected to increase customer satisfaction with online shopping by allowing users to quickly search for clothing they are looking for.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Secure Self-Driving Car System Resistant to the Adversarial Evasion Attacks (적대적 회피 공격에 대응하는 안전한 자율주행 자동차 시스템)

  • Seungyeol Lee;Hyunro Lee;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.907-917
    • /
    • 2023
  • Recently, a self-driving car have applied deep learning technology to advanced driver assistance system can provide convenience to drivers, but it is shown deep that learning technology is vulnerable to adversarial evasion attacks. In this paper, we performed five adversarial evasion attacks, including MI-FGSM(Momentum Iterative-Fast Gradient Sign Method), targeting the object detection algorithm YOLOv5 (You Only Look Once), and measured the object detection performance in terms of mAP(mean Average Precision). In particular, we present a method applying morphology operations for YOLO to detect objects normally by removing noise and extracting boundary. As a result of analyzing its performance through experiments, when an adversarial attack was performed, YOLO's mAP dropped by at least 7.9%. The YOLO applied our proposed method can detect objects up to 87.3% of mAP performance.

An User-Friendly Kiosk System Based on Deep Learning (딥러닝 기반 사용자 친화형 키오스크 시스템)

  • Su Yeon Kang;Yu Jin Lee;Hyun Ah Jung;Seung A Cho;Hyung Gyu Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • This study aims to provide a customized dynamic kiosk screen that considers user characteristics to cope with changes caused by increased use of kiosks. In order to optimize the screen composition according to the characteristics of the digital vulnerable group such as the visually impaired, the elderly, children, and wheelchair users, etc., users are classified into nine categories based on real-time analysis of user characteristics (wheelchair use, visual impairment, age, etc.). The kiosk screen is dynamically adjusted according to the characteristics of the user to provide efficient services. This study shows that the system communication and operation were performed in the embedded environment, and the used object detection, gait recognition, and speech recognition technologies showed accuracy of 74%, 98.9%, and 96%, respectively. The proposed technology was verified for its effectiveness by implementing a prototype, and through this, this study showed the possibility of reducing the digital gap and providing user-friendly "barrier-free kiosk" services.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.

Multi-camera System Calibration with Built-in Relative Orientation Constraints (Part 2) Automation, Implementation, and Experimental Results

  • Lari, Zahra;Habib, Ayman;Mazaheri, Mehdi;Al-Durgham, Kaleel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.205-216
    • /
    • 2014
  • Multi-camera systems have been widely used as cost-effective tools for the collection of geospatial data for various applications. In order to fully achieve the potential accuracy of these systems for object space reconstruction, careful system calibration should be carried out prior to data collection. Since the structural integrity of the involved cameras' components and system mounting parameters cannot be guaranteed over time, multi-camera system should be frequently calibrated to confirm the stability of the estimated parameters. Therefore, automated techniques are needed to facilitate and speed up the system calibration procedure. The automation of the multi-camera system calibration approach, which was proposed in the first part of this paper, is contingent on the automated detection, localization, and identification of the object space signalized targets in the images. In this paper, the automation of the proposed camera calibration procedure through automatic target extraction and labelling approaches will be presented. The introduced automated system calibration procedure is then implemented for a newly-developed multi-camera system while considering the optimum configuration for the data collection. Experimental results from the implemented system calibration procedure are finally presented to verify the feasibility the proposed automated procedure. Qualitative and quantitative evaluation of the estimated system calibration parameters from two-calibration sessions is also presented to confirm the stability of the cameras' interior orientation and system mounting parameters.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.