DOI QR코드

DOI QR Code

Development of Hand-drawn Clothing Matching System Based on Neural Network Learning

신경망 모델을 이용한 손그림 의류 매칭 시스템 개발

  • Received : 2021.08.26
  • Accepted : 2021.12.17
  • Published : 2021.12.31

Abstract

Recently, large online shopping malls are providing image search services as well as text or category searches. However, in the case of an image search service, there is a problem in that the search service cannot be used in the absence of an image. This paper describes the development of a system that allows users to find the clothes they want through hand-drawn images of the style of clothes when they search for clothes in an online clothing shopping mall. The hand-drawing data drawn by the user increases the accuracy of matching through neural network learning, and enables matching of clothes using various object detection algorithms. This is expected to increase customer satisfaction with online shopping by allowing users to quickly search for clothing they are looking for.

최근에 대형 온라인 쇼핑몰에서는 텍스트나 카테고리 검색뿐만 아니라 이미지 검색 서비스를 제공하고 있다. 그러나 이미지 검색 서비스의 경우 이미지가 없는 상황에서는 검색 서비스를 이용할 수 없는 문제점이 있다. 본 논문에서는 사용자가 온라인 의류쇼핑몰에서 옷을 검색할 시, 옷의 스타일에 대하여 직접 그릴 수 있는 손그림을 통해 본인이 원하는 옷을 찾을 수 있는 시스템의 개발내용에 대해 기술한다. 사용자가 그린 손그림 데이터는 신경망학습을 통해 매칭의 정확도를 높이고, 다양한 객체인식 알고리즘을 활용하여 의류를 매칭할 수 있도록 한다. 이를 통해 사용자가 찾고자 하는 의류를 빠르게 검색할 수 있음으로써 온라인 쇼핑 이용의 고객 만족도를 높일 수 있을 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 2021년 과학기술정보통신부 및 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2019-0-01817)

References

  1. Economic Trend Statistical Commissioner, Service Industry Trend, "December 2020 and Annual Online Shopping Trends," Public report of Statistical Office, Feb. 2021.
  2. S. Kim and D. Cho, "Design and Implementation of Hashtag Recommendation System Based on Image Label Extraction using Deep Learning," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, Aug. 2020, pp. 709-716. https://doi.org/10.13067/JKIECS.2020.15.4.709
  3. J. Kwon, D. Kim, T. Hwang, and H. Park, "A Development of Effective Object Detection System Using Multi-Device LiDAR Sensor in Vehicle Driving Environment," J. of the Korea Institute of Electronic Communication Science, vol. 13, no. 2, 2018, pp. 313-320. https://doi.org/10.13067/JKIECS.2018.13.2.313
  4. M. Shin and W. Lee, "A Driver's Condition Warning System using Eye Aspect Ratio," J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 2, Apr. 2020, pp. 349-356. https://doi.org/10.13067/JKIECS.2020.15.2.349
  5. S. Lee, M. Choi, H. Lee, S. Kim, and I. Moon, "Website using Fashion Image Category Classification," In Proc. of the Korea Institute of Information and Communication Engineering (KIICE), Busan, Korea, Oct. 2019, pp. 514-517.
  6. H. Lee and S. Shin "Development of Detection System using type of Clothing," In Proc. of the Korea Institute of Information and Communication Engineering (KIICE), Gyeongju, Korea, July 2020, pp. 249-250.
  7. H. Song, M. Ko, and J. Yoo "Fashion analysis for Artificial intelligence," In Proc. of the Korean Society of Broadcast Engineers Conference, Online Conference, July 2020, pp. 673-674.
  8. H. Song, M. Ko, C.S. Cho, and J. Yoo "Implications of Artificial Intelligence for the apparel Industry," In Proc. of the Korean Institute Of Communications and Information Sciences (KICS), Yongpyong, Korea, Feb. 2020, pp. 1026-1027.
  9. B. Lim, M. Jeong, and J. Nang, "A Fashion Image Retrieval using Cloth Region Proposal Network based on Deep Learning," In Proc. of the Korea Computer Congress, Jeju, Korea, June 2019, pp. 957-959.
  10. S. Kang and J. Lee, "The Exploratory Study of Photo Retrieval via Object Detection based Searching," In Proc. of Human Computer Interaction (HCI) Korea, Jeju, Korea, Feb. 2019, pp. 131-141.
  11. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A.C. Berg, "SSD: Single Shot MultiBox Detector," European Conference on Computer Vision (ECCV), Amsterdam, Netherlands, Oct. 2016, pp. 6517-6525.