DOI QR코드

DOI QR Code

Groundwater Level Prediction using ANFIS Algorithm

딥러닝을 이용한 하천 유량 예측 알고리즘

  • 박귀만 (전남대학교 전기 및 반도체공학과) ;
  • 오세랑 (전남대학교 전기 및 반도체공학과) ;
  • 박근호 (전남대학교 전기 및 반도체공학과) ;
  • 배영철 (전남대학교 전기.전자통신.컴퓨터공학부)
  • Received : 2021.09.05
  • Accepted : 2021.12.17
  • Published : 2021.12.31

Abstract

In this paper, we present FDNN algorithm to perform prediction based on academic understanding. In order to apply prediction based on academic understanding rather than data-dependent prediction to deep learning, we constructed algorithm based on mathematical and hydrology. We construct a model that predicts flow rate of a river as an input of precipitation, and measure the model's performance through K-fold cross validation.

본 논문은 학문적인 이해를 기반을 둔 예측을 수행하기 위해 FDNN(: Flood drought index neural network) 알고리즘을 제시한다. 데이터에 의존한 예측이 아닌 학문적인 이해를 기반을 둔 예측을 딥러닝에 적용하기 위해, 알고리즘을 수리, 수문학을 기반으로 구성하였다. 강수량의 입력으로 하천의 유량을 예측하는 모델을 구성하여 K-교차검증을 통해 모델의 성능을 측정한다. 제시한 알고리즘의 성능을 증명하기 위해 시계열 예측에서 가장 많이 사용되는 LSTM(: Long short term memory) 알고리즘의 예측 성능과 비교하여 제시한 알고리즘의 우수성을 나타낸다.

Keywords

Acknowledgement

This study was financially supported by Chonn am National University(G-KIRI)

References

  1. G. Bak and Y. Bae, "Performance comparison of machine learning in the various kind of prediction," J. the Korea institute of electronic communication science, vol. 14, no. 1, 2019, pp. 169-178. https://doi.org/10.13067/JKIECS.2019.14.1.169
  2. D. Hwang, Y. Bae, "The prediction of bidding price using deep learning in the electronic bidding," J. the Korea institute of electronic communication science, vol. 15, no. 1, 2020, pp. 147-152. https://doi.org/10.13067/JKIECS.2020.15.1.147
  3. I. Gee, D. Kwon, and J. Ki, "Comparing the performance of machine learning algorithms in predicting river water quality and quantity," Korean society of water science and technology, vol.28, no.1 , Feb. 2020, pp. 49-57. https://doi.org/10.17640/KSWST.2020.28.1.49
  4. B. Hwang, "Evaluation of LSTM model for inflow prediction of lake Sapgye," J. the Korea academia-industrial cooperation society, vol. 22, no. 4, 2021, pp. 287-294.
  5. M. Sanjuan, "Artificial intelligence, chaos, prediction and understanding in science," International Journal of Bifurcation and Chaos 31.11:2150173, vol.31, no.11, 2021, pp. 1-25. https://doi.org/10.1142/S021812742150173X
  6. H. Lee, S. An, and G. Park, "Assessing the frequency of dry water in the dam basin," In Proceedings of the Korean environmental sciences society conference, Gyeongju, Korea, Nov. 2020.
  7. J. Moon, "Estimation of Han river runoff using Cheugugi data," J. Korea water resources Association, vol.28, no.5, 2019, pp. 1067-1074.
  8. D. Ahn, S. Cho, and H. Kim "A study on the dynamics of police motorcycle simulator," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 6, 2020, pp. 533-542.
  9. S. Pal and S. Mitra, "Multilayer perceptron, fuzzy sets, classifiaction," Transactions on neural networks. IEEE, vol. 3, 1992, pp. 683-697. https://doi.org/10.1109/72.159058
  10. X. Wang, P. Guo, and X Huang, "A review of wind power forecasting models," Energy procedia 12, 2011, pp. 770-778. https://doi.org/10.1016/j.egypro.2011.10.103