• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.029 seconds

A Design of Marker-Based Augmented Reality System Structure using Object Removal Technique (객체 제거 기법을 활용한 마커기반 증강현실 시스템 구조 설계)

  • Kim, Dong-Hyun;Jung, Sung-Mo;Lim, Ji-Hoon;Cagalaban, Giovanni;Leem, Hyo-Young;Geun, So-Geol;Kim, Su-U;Kim, Seok-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.621-624
    • /
    • 2011
  • Recently, augmented reality is divided into broadly marker based and markerless based as part of HCI (Human Computer Interaction). Markerless based is augmented object using natural features in real-world environment. On the other hand, Marker based is use to calculate easily the coordinates and exactly augmented object using flat marker of rectangular. However, marker-based image is provided due to the presence of the marker in a markerless, giving users a more less realistic and immersive view. In this paper, We research about combined diminished reality and augmented reality for Marker-Based Augmented Reality System Structure using Object Removal Tchnique in order to increase realistic and immersive view.

  • PDF

3-D Object Recognition and Restoration for Packing Administration System Using Ultrasonic Sensors and Neural Networks (주차관리 시스템 응용을 위한 신경회로망과 연계된 초음파 센서의 3차원 물체인식과 복원)

  • 조현철;이기성;사공건
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.4
    • /
    • pp.78-84
    • /
    • 1996
  • In this study, 3-D object recognition and restoration independent of the object translation for automotive kind recognition in parking administration system using an ultrasonic sensor array, neural networks and invariant moments are presented. Using invariant moment vectors of the acquired data 16$\times$8 pixels, 3-D objects could be classified by SCL (Simple Competitive Learning) neural networks. Modified SCL neural networks using the 16$\times$8 low resolution image was used for object restoration of 32$\times$32 high resolution image. Invariant moment vectors kept constant independent of the object translation. The recognition rates for the training and the testing data were 98[%] and 95[%], respectively. The experimental results have shown that ultrasonic sensor array with the neural networks could be applied for the detection of the automobiles and classification of the automotive kind.

  • PDF

Adaptive Real-Time Ship Detection and Tracking Using Morphological Operations

  • Arshad, Nasim;Moon, Kwang-Seok;Kim, Jong-Nam
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.168-172
    • /
    • 2014
  • In this paper, we propose an algorithm that can efficiently detect and monitor multiple ships in real-time. The proposed algorithm uses morphological operations and edge information for detecting and tracking ships. We used smoothing filter with a $3{\times}3$ Gaussian window and luminance component instead of RGB components in the captured image. Additionally, we applied Sobel operator for edge detection and a threshold for binary images. Finally, object labeling with connectivity and morphological operation with open and erosion were used for ship detection. Compared with conventional methods, the proposed method is meant to be used mainly in coastal surveillance systems and monitoring systems of harbors. A system based on this method was tested for both stationary and non-stationary backgrounds, and the results of the detection and tracking rates were more than 97% on average. Thousands of image frames and 20 different video sequences in both online and offline modes were tested, and an overall detection rate of 97.6% was achieved.

AUTOMATIC DETECTION OF OIL SPILLS WITH LEVEL SET SEGMENTATION TECHNIQUE FROM REMOTELY SENSED IMAGERY

  • Konstantinos, Karantzalos;Demetre, Argialas
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.126-129
    • /
    • 2006
  • The marine environment is under considerable threat from intentional or accidental oil spills, ballast water discharged, dredging and infilling for coastal development, and uncontrolled sewage and industrial wastewater discharges. Monitoring spills and illegal oil discharges is an important component in ensuring compliance with marine protection legislation and general protection of the coastal environments. For the monitoring task an image processing system is needed that can efficiently perform the detection and the tracking of oil spills and in this direction a significant amount of research work has taken place mainly with the use of radar (SAR) remote sensing data. In this paper the level set image segmentation technique was tested for the detection of oil spills. Level set allow the evolving curve to change topology (break and merge) and therefore boundaries of particularly intricate shapes can be extracted. Experimental results demonstrated that the level set segmentation can be used for the efficient detection and monitoring of oil spills, since the method coped with abrupt shape’s deformations and splits.

  • PDF

A Study on DDoS Detection Technique based on Cluster in Mobile Ad-hoc Network (무선 애드혹 망에서 클러스터 기반 DDoS 탐지 기법에 관한 연구)

  • Yang, Hwan-Seok;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.25-30
    • /
    • 2011
  • MANET has a weak construction in security more because it is consisted of only moving nodes and doesn't have central management system. The DDoS attack is a serious attack among these attacks which threaten wireless network. The DDoS attack has various object and trick and become intelligent. In this paper, we propose the technique to raise DDoS detection rate by classifying abnormal traffic pattern. Cluster head performs sentinel agent after nodes which compose MANET are made into cluster. The decision tree is applied to detect abnormal traffic pattern after the sentinel agent collects all traffics and it judges traffic pattern and detects attack also. We confirm high attack detection rate of proposed detection technique in this study through experimentation.

Modified Principal Component Analysis for Real-Time Endpoint Detection of SiO2 Etching Using RF Plasma Impedance Monitoring

  • Jang, Hae-Gyu;Kim, Dae-Gyeong;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • Plasma etching is used in microelectronic processing for patterning of micro- and nano-scale devices. Commonly, optical emission spectroscopy (OES) is widely used for real-time endpoint detection for plasma etching. However, if the viewport for optical-emission monitoring becomes blurred by polymer film due to prolonged use of the etching system, optical-emission monitoring becomes impossible. In addition, when the exposed area ratio on the wafer is small, changes in the optical emission are so slight that it is almost impossible to detect the endpoint of etching. For this reason, as a simple method of detecting variations in plasma without contamination of the reaction chamber at low cost, a method of measuring plasma impedance is being examined. The object in this research is to investigate the suitability of using plasma impedance monitoring (PIM) with statistical approach for real-time endpoint detection of $SiO_2$ etching. The endpoint was determined by impedance signal variation from I-V monitor (VI probe). However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ film on Si wafer is etched by fluorocarbon plasma on inductive coupled plasma (ICP) etcher. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance analysis is compared with optical emission spectroscopy (OES). From impedance data, we tried to analyze physical properties of plasma, and real-time endpoint detection can be achieved.

  • PDF

CUDA based parallel design of a shot change detection algorithm using frame segmentation and object movement

  • Kim, Seung-Hyun;Lee, Joon-Goo;Hwang, Doo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.7
    • /
    • pp.9-16
    • /
    • 2015
  • This paper proposes the parallel design of a shot change detection algorithm using frame segmentation and moving blocks. In the proposed approach, the high parallel processing components, such as frame histogram calculation, block histogram calculation, Otsu threshold setting function, frame moving operation, and block histogram comparison, are designed in parallel for NVIDIA GPU. In order to minimize memory access delay time and guarantee fast computation, the output of a GPU kernel becomes the input data of another kernel in a pipeline way using the shared memory of GPU. In addition, the optimal sizes of CUDA processing blocks and threads are estimated through the prior experiments. In the experimental test of the proposed shot change detection algorithm, the detection rate of the GPU based parallel algorithm is the same as that of the CPU based algorithm, but the average of processing time speeds up about 6~8 times.

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

Fixed-Wing UAV's Image-Based Target Detection and Tracking using Embedded Processor (임베디드 프로세서를 이용한 고정익 무인항공기 영상기반 목표물 탐지 및 추적)

  • Kim, Jeong-Ho;Jeong, Jae-Won;Han, Dong-In;Heo, Jin-Woo;Cho, Kyeom-Rae;Lee, Dae-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • In this paper, we described development of on-board image processing system and its process and verified its performance through flight experiment. The image processing board has single ARM(Advanced Risk Machine) processor. We performed Embedded Linux Porting. Algorithm to be applied for object tracking is color-based image processing algorithm, it can be designed to track the object that has specific color on ground in real-time. To verify performance of the on-board image processing system, we performed flight test using the PNUAV, UAV developed by LAB. Also, we performed optimization of the image processing algorithm and kernel to improve real-time performance. Finally we confirmed that proposed system can track the blue-color object within four pixels error range consistently in the experiment.

Fast On-Road Vehicle Detection Using Reduced Multivariate Polynomial Classifier (축소 다변수 다항식 분류기를 이용한 고속 차량 검출 방법)

  • Kim, Joong-Rock;Yu, Sun-Jin;Toh, Kar-Ann;Kim, Do-Hoon;Lee, Sang-Youn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.639-647
    • /
    • 2012
  • Vision-based on-road vehicle detection is one of the key techniques in automotive driver assistance systems. However, due to the huge within-class variability in vehicle appearance and environmental changes, it remains a challenging task to develop an accurate and reliable detection system. In general, a vehicle detection system consists of two steps. The candidate locations of vehicles are found in the Hypothesis Generation (HG) step, and the detected locations in the HG step are verified in the Hypothesis Verification (HV) step. Since the final decision is made in the HV step, the HV step is crucial for accurate detection. In this paper, we propose using a reduced multivariate polynomial pattern classifier (RM) for the HV step. Our experimental results show that the RM classifier outperforms the well-known Support Vector Machine (SVM) classifier, particularly in terms of the fast decision speed, which is suitable for real-time implementation.