• Title/Summary/Keyword: object detection system

Search Result 1,079, Processing Time 0.026 seconds

Vision Chip for Edge and Motion Detection with a Function of Output Offset Cancellation (출력옵셋의 제거기능을 가지는 윤곽 및 움직임 검출용 시각칩)

  • Park, Jong-Ho;Kim, Jung-Hwan;Suh, Sung-Ho;Shin, Jang-Kyoo;Lee, Min-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.188-194
    • /
    • 2004
  • With a remarkable advance in CMOS (complimentary metal-oxide-semiconductor) process technology, a variety of vision sensors with signal processing circuits for complicated functions are actively being developed. Especially, as the principles of signal processing in human retina have been revealed, a series of vision chips imitating human retina have been reported. Human retina is able to detect the edge and motion of an object effectively. The edge detection among the several functions of the retina is accomplished by the cells called photoreceptor, horizontal cell and bipolar cell. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge and motion detection. The designed vision chip was fabricated using $0.6{\mu}m$ CMOS process and the characteristics were measured. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.

Real-Time Earlobe Detection System on the Web

  • Kim, Jaeseung;Choi, Seyun;Lee, Seunghyun;Kwon, Soonchul
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.110-116
    • /
    • 2021
  • This paper proposed a real-time earlobe detection system using deep learning on the web. Existing deep learning-based detection methods often find independent objects such as cars, mugs, cats, and people. We proposed a way to receive an image through the camera of the user device in a web environment and detect the earlobe on the server. First, we took a picture of the user's face with the user's device camera on the web so that the user's ears were visible. After that, we sent the photographed user's face to the server to find the earlobe. Based on the detected results, we printed an earring model on the user's earlobe on the web. We trained an existing YOLO v5 model using a dataset of about 200 that created a bounding box on the earlobe. We estimated the position of the earlobe through a trained deep learning model. Through this process, we proposed a real-time earlobe detection system on the web. The proposed method showed the performance of detecting earlobes in real-time and loading 3D models from the web in real-time.

An Outlier Cluster Detection Technique for Real-time Network Intrusion Detection Systems (실시간 네트워크 침입탐지 시스템을 위한 아웃라이어 클러스터 검출 기법)

  • Chang, Jae-Young;Park, Jong-Myoung;Kim, Han-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.43-53
    • /
    • 2007
  • Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.

  • PDF

Real Time Hornet Classification System Based on Deep Learning (딥러닝을 이용한 실시간 말벌 분류 시스템)

  • Jeong, Yunju;Lee, Yeung-Hak;Ansari, Israfil;Lee, Cheol-Hee
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1141-1147
    • /
    • 2020
  • The hornet species are so similar in shape that they are difficult for non-experts to classify, and because the size of the objects is small and move fast, it is more difficult to detect and classify the species in real time. In this paper, we developed a system that classifies hornets species in real time based on a deep learning algorithm using a boundary box. In order to minimize the background area included in the bounding box when labeling the training image, we propose a method of selecting only the head and body of the hornet. It also experimentally compares existing boundary box-based object recognition algorithms to find the best algorithms that can detect wasps in real time and classify their species. As a result of the experiment, when the mish function was applied as the activation function of the convolution layer and the hornet images were tested using the YOLOv4 model with the Spatial Attention Module (SAM) applied before the object detection block, the average precision was 97.89% and the average recall was 98.69%.

Human Tracking Based On Context Awareness In Outdoor Environment

  • Binh, Nguyen Thanh;Khare, Ashish;Thanh, Nguyen Chi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3104-3120
    • /
    • 2017
  • The intelligent monitoring system has been successfully applied in many fields such as: monitoring of production lines, transportation, etc. Smart surveillance systems have been developed and proven effective in some specific areas such as monitoring of human activity, traffic, etc. Most of critical application monitoring systems involve object tracking as one of the key steps. However, task of tracking of moving object is not easy. In this paper, the authors propose a method to implement human object tracking in outdoor environment based on human features in shearlet domain. The proposed method uses shearlet transform which combines the human features with context-sensitiveness in order to improve the accuracy of human tracking. The proposed algorithm not only improves the edge accuracy, but also reduces wrong positions of the object between the frames. The authors validated the proposed method by calculating Euclidean distance and Mahalanobis distance values between centre of actual object and centre of tracked object, and it has been found that the proposed method gives better result than the other recent available methods.

Efficient Correction of a Rotated Object Using Radon Transform (라돈 변환을 이용한 회전된 물체의 효율적인 보정)

  • Cho, Bo-Ho;Jung, Sung-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.291-295
    • /
    • 2008
  • In this paper, we propose an input image reduction method to solve the problems of Radon transform which is a line structure analysis tool to correct a rotated object through a vision system. First we extract an object image removed background from the input image. Then we also select a reduced object image as a final input mage of Radon transform from the object image by considering slope. Finally we extract a rotated angle by using Radon transform with the final input image and correct the rotated object with the angle. In experimental results, we could improve the process time of about 64%, reduce the memory space of about 18% and make progress the line detection rate of about 18%.

An Improved Cast Shadow Removal in Object Detection (객체검출에서의 개선된 투영 그림자 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Kim, Yu-Sung;Kim, Jae-Min
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.889-894
    • /
    • 2009
  • Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.

  • PDF

Multi-Object Tracking Algorithm for Vehicle Detection (차량 검출을 위한 다중객체추적 알고리즘)

  • Lee, Geun-Hoo;Kim, Gyu-Yeong;Park, Hong-Min;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.816-819
    • /
    • 2011
  • The image recognition system using CCTV camera has been introduced to minimize not only loss of life and property but also traffic jam in the tunnel. In this paper, multi-object detection algorithm is proposed to track multi vehicles. The proposed algorithm is to detect multi cars based on Adaboost and to track multi vehicles to use template matching. As results of simulations, it is shown that proposed algorithm is useful for tracking multi vehicles.

  • PDF

Slip Detection of Robot Gripper with Flexible Tactile Sensor (유연 촉각 센서를 이용한 로봇 그리퍼의 미끄러짐 감지)

  • Seo, Ji Won;Lee, Ju Kyoung;Lee, Suk;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.157-164
    • /
    • 2014
  • In this paper, we design a gripping force control system using tactile sensor to prevent slip when gripper tries to grasp and lift an object. We use a flexible tactile sensor for measuring uniplanar pressure on gripper's finger and develop an algorithm to detect the onset of slip using the sensor output. We also use a flexible pressure sensor to measure the normal force. In addition, various signal processing techniques are used to reduce noise included in the sensor output. A 3-finger gripper is used to grasp and lift up a cylindrical object. The tactile sensor is attached on one of fingers, and sends output signals to detect slip. Whenever the sensor signal is similar to the slip pattern, gripper force is increased. In conclusion, this research shows that slip can be detected using the tactile sensor and we can control gripping force to eliminate slip between gripper and object.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.