• 제목/요약/키워드: object detection system

검색결과 1,078건 처리시간 0.024초

고정형 임베디드 감시 카메라 시스템을 위한 다중 배경모델기반 객체검출 (Multiple-Background Model-Based Object Detection for Fixed-Embedded Surveillance System)

  • 박수인;김민영
    • 제어로봇시스템학회논문지
    • /
    • 제21권11호
    • /
    • pp.989-995
    • /
    • 2015
  • Due to the recent increase of the importance and demand of security services, the importance of a surveillance monitor system that makes an automatic security system possible is increasing. As the market for surveillance monitor systems is growing, price competitiveness is becoming important. As a result of this trend, surveillance monitor systems based on an embedded system are widely used. In this paper, an object detection algorithm based on an embedded system for a surveillance monitor system is introduced. To apply the object detection algorithm to the embedded system, the most important issue is the efficient use of resources, such as memory and processors. Therefore, designing an appropriate algorithm considering the limit of resources is required. The proposed algorithm uses two background models; therefore, the embedded system is designed to have two independent processors. One processor checks the sub-background models for if there are any changes with high update frequency, and another processor makes the main background model, which is used for object detection. In this way, a background model will be made with images that have no objects to detect and improve the object detection performance. The object detection algorithm utilizes one-dimensional histogram distribution, which makes the detection faster. The proposed object detection algorithm works fast and accurately even in a low-priced embedded system.

SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출 (Moving Object Detection Using SURF and Label Cluster Update in Active Camera)

  • 정용한;박은수;이형호;왕덕창;허욱열;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현 (Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments)

  • 배주원;한병길
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

환경변화에 강인한 다중 객체 탐지 및 추적 시스템 (Multiple Object Detection and Tracking System robust to various Environment)

  • 이우주;이배호
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.88-94
    • /
    • 2009
  • 본 논문에서는 보안 및 감시 시스템 분야에 적용할 수 있는 실시간 객체 탐지 및 추적 알고리듬을 제안한다. 구현된 시스템은 객체 탐지 단계, 객체 추적 단계로 구성되었다. 객체탐지에서는 정화한 객체의 움직임 검출을 위한 향상된 검출 방법인 적응배경 차분법과 적응적 블록 기반 모델을 제안한다. 객체추적에서는 칼만 필터에 기반한 다중 물체 추적 시스템을 설계하였다. 실험결과 이동객체의 움직임을 추정할 수 있었고, 추적 과정에서도 다수의 객체를 잃어버리지 않고 정상적으로 추적할 수 있었다. 또한 원거리 탐지 및 추적에서 향상된 결과를 얻을 수 있었다.

어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지 (Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image)

  • 최윤원;권기구;김종효;나경진;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제21권8호
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

Local and Global Information Exchange for Enhancing Object Detection and Tracking

  • Lee, Jin-Seok;Cho, Shung-Han;Oh, Seong-Jun;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권5호
    • /
    • pp.1400-1420
    • /
    • 2012
  • Object detection and tracking using visual sensors is a critical component of surveillance systems, which presents many challenges. This paper addresses the enhancement of object detection and tracking via the combination of multiple visual sensors. The enhancement method we introduce compensates for missed object detection based on the partial detection of objects by multiple visual sensors. When one detects an object or more visual sensors, the detected object's local positions transformed into a global object position. Local and global information exchange allows a missed local object's position to recover. However, the exchange of the information may degrade the detection and tracking performance by incorrectly recovering the local object position, which propagated by false object detection. Furthermore, local object positions corresponding to an identical object can transformed into nonequivalent global object positions because of detection uncertainty such as shadows or other artifacts. We improved the performance by preventing the propagation of false object detection. In addition, we present an evaluation method for the final global object position. The proposed method analyzed and evaluated using case studies.

카메라 영상의 기하학적 해석을 통한 YOLO 알고리즘 기반 해상물체탐지시스템 개발에 관한 연구 (A Study on the Development of YOLO-Based Maritime Object Detection System through Geometric Interpretation of Camera Images)

  • 강병선;정창현
    • 해양환경안전학회지
    • /
    • 제28권4호
    • /
    • pp.499-506
    • /
    • 2022
  • 자율운항선박이 상용화되어 연안을 항해하기 위해서는 해상의 장애물을 탐지할 수 있어야 한다. 연안에서 가장 많이 볼 수 있는 장애물 중의 하나는 양식장의 부표이다. 이에 본 연구에서는 YOLO 알고리즘을 이용하여 해상의 부표를 탐지하고, 카메라 영상의 기하학적 해석을 통해 선박으로부터 떨어진 부표의 거리와 방위를 계산하여 장애물을 시각화하는 해상물체탐지시스템을 개발하였다. 1,224장의 양식장 부표 사진으로 해양물체탐지모델을 훈련시킨 결과, 모델의 Precision은 89.0 %, Recall은 95.0 % 그리고 F1-score는 92.0 %이었다. 얻어진 영상좌표를 이용하여 카메라로부터 떨어진 물체의 거리와 방위를 계산하기 위해 카메라 캘리브레이션을 실시하고 해상물체탐지시스템의 성능을 검증하기 위해 Experiment A, B를 설계하였다. 해상물체탐지시스템의 성능을 검증한 결과 해상물체탐지시스템이 레이더보다 근거리 탐지 능력이 뛰어나서 레이더와 더불어 항행보조장비로 사용이 가능할 것으로 판단된다.

An Efficient Vision-based Object Detection and Tracking using Online Learning

  • Kim, Byung-Gyu;Hong, Gwang-Soo;Kim, Ji-Hae;Choi, Young-Ju
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.285-288
    • /
    • 2017
  • In this paper, we propose a vision-based object detection and tracking system using online learning. The proposed system adopts a feature point-based method for tracking a series of inter-frame movement of a newly detected object, to estimate rapidly and toughness. At the same time, it trains the detector for the object being tracked online. Temporarily using the result of the failure detector to the object, it initializes the tracker back tracks to enable the robust tracking. In particular, it reduced the processing time by improving the method of updating the appearance models of the objects to increase the tracking performance of the system. Using a data set obtained in a variety of settings, we evaluate the performance of the proposed system in terms of processing time.

저고도 무인항공기를 이용한 보행자 추적에 관한 연구 (A Study on Pedestrians Tracking using Low Altitude UAV)

  • 서창진
    • 전기학회논문지P
    • /
    • 제67권4호
    • /
    • pp.227-232
    • /
    • 2018
  • In this paper, we propose a faster object detection and tracking method using Deep Learning, UAV(unmanned aerial vehicle), Kalman filter and YOLO(You Only Look Once)v3 algorithms. The performance of the object tracking system is decided by the performance and the accuracy of object detecting and tracking algorithms. So we applied to the YOLOv3 algorithm which is the best detection algorithm now at our proposed detecting system and also used the Kalman Filter algorithm that uses a variable detection area as the tracking system. In the experiment result, we could find the proposed system is an excellent result more than a fixed area detection system.

이종센서를 이용한 차량과 장애물 검지시스템 개발 기초 연구 (Development of Vehicle and/or Obstacle Detection System using Heterogenous Sensors)

  • 장정아;이기룡;곽동용
    • 한국ITS학회 논문지
    • /
    • 제11권5호
    • /
    • pp.125-135
    • /
    • 2012
  • 본 연구는 도로 위의 객체를 분류하고 그 위치를 추정하기 위해 카메라와 레이저스캐너를 이용한 이종센서 검지 시스템의 연구를 다루고 있다. 이러한 도로인프라에서의 검지시스템은 ADAS(Advanced Driver Assist System) 및 (반)자동제어 서비스 등의 새로운 C-ITS 서비스에서 요구되는 객체의 위치 정보를 검지할 수 있다. 본 연구에서는 국외 관련 사례를 살펴보고, 카메라와 레이저스캐너를 이용한 검지시스템의 가능성을 살펴보았다. 그 후 이종센서 처리 알고리즘을 제안하고, 실 도로환경에서 몇 가지 도로상황 시나리오를 설정하여 시험검증을 실시하였다. 그 결과 이종센서 검지시스템으로 차량, 보행자 및 기타 장애물에 대한 검지 및 위치 추정에 대하여 비교적 용이하게 이용될 수 있음을 확인할 수 있었다. 본 연구의 경우 매우 이상적인 조건에서 실험이 실시되었으며, 조도, 날씨 등의 외부환경 조건의 변화에 따른 알고리즘의 평가가 필요하다. 이러한 연구는 향후 미래의 C-ITS 환경 하에서 객체 검지 기술로 활용될 수 있을 것으로 기대한다.