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Abstract 
 

Object detection and tracking using visual sensors is a critical component of surveillance 
systems, which presents many challenges. This paper addresses the enhancement of object 
detection and tracking via the combination of multiple visual sensors. The enhancement 
method we introduce compensates for missed object detection based on the partial detection of 
objects by multiple visual sensors. When one detects an object or more visual sensors, the 
detected object’s local positions transformed into a global object position. Local and global 
information exchange allows a missed local object’s position to recover. However, the 
exchange of the information may degrade the detection and tracking performance by 
incorrectly recovering the local object position, which propagated by false object detection. 
Furthermore, local object positions corresponding to an identical object can transformed into 
nonequivalent global object positions because of detection uncertainty such as shadows or 
other artifacts. We improved the performance by preventing the propagation of false object 
detection. In addition, we present an evaluation method for the final global object position. 
The proposed method analyzed and evaluated using case studies. 
 
 
Keywords: visual sensor, localization, distributed detection system, sensor network, data 
combination, information exchange 
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1. Introduction 

Visual sensor-based surveillance systems are of great interest to a diversity of fields, and 
many researchers have tried to enhance the object detection, tracking, and localization 
performance [1][2][3][4]. In particular, object detection and tracking with a visual sensor is a 
critical component when evaluating a complete surveillance system and is also a challenging 
problem [5][6][7]. Difficulties occur with object detection and tracking because of abrupt 
object motion, variable lighting conditions, the changing appearance of an object and its 
background, non-rigid object structures, object-to-object occlusions, and 
object-to-background occlusions. Many approaches and algorithms have been proposed to 
overcome these problems. To address the lighting problem, [8] combined color and gradient 
features during quasi-illumination invariant background subtraction. [9] applied time-varying 
reflectance images and their corresponding illumination images to a sequence of images, 
which was followed by a normalization process. [10] used a probabilistic method for adaptive 
background subtraction, which produced a stable, real-time tracker that dealt with lighting 
changes reliably. Recently, [11] developed background subtraction algorithms, which 
particularly targeted rapid illumination changes. To address the changing appearance problem, 
[12] adaptively selected object features to discriminate an object from a background more 
effectively. [13] proposed a method with a training phase that learned an object’s geometry 
and appearance using a randomized tree classifier. Recently, [14] proposed a method for 
tracking objects with a changing appearance based on a sparse, local feature-based object 
representation. In this context, a dynamic model was proposed to evolve a feature graph that 
was dependent on the appearance and structure changes by adding new stable features, as well 
as removing inactive features. To address the occlusion problem, [15] predicted occlusion by 
searching for the pairwise overlapping of bounding boxes in the predicted positions. [16] 
produced an occlusion map, where potentially occluding pixels were detected if they were part 
of the reference image. Recently, [17] developed a method that generated a probability density 
function for the depth of a scene at each pixel using a training set of detected blobs. 
Furthermore, to represent object characteristics more accurately, [1] used a library containing 
a set of counterexamples, while [2] and [3] used a more detailed construction that 
corresponded to an object. 

However, single visual sensor-based object detection/tracking still has limitations with 
complex scenes such as underground stations and malls. [18] presented a comprehensive 
survey of object detection based on an object’s motion and behavior. It has been suggested that 
the most promising and practical method for overcoming the shortcomings of visual 
sensor-based surveillance systems is to use multiple visual sensors. Multiple visual 
sensor-based object detection and tracking can be conducted as follow. If an object is present, 
information about the object and its position is generated locally by each visual sensor, before 
the local information is combined at a global information center. Based on information derived 
from multiple local visual sensors, which can be inconsistent among the local visual sensors, 
the global information center makes a single global decision about the existence of an object 
and it continues to track the object when it is detected. The advantage of using multiple visual 
sensors is that when an object is detected and tracked by one or more visual sensors, a missing 
local object position can be recovered by the global information center based on the detection 
of one or a few objects using local visual sensor(s). An object can also be tracked by a visual 
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sensor that did not detect it originally, because it can be recovered from the global information 
center. 

The combination of a diverse range of local information, however, does not always provide a 
better performance. This is because the combination of incorrect information by the global 
information center may degrade the performance by propagating the detection of a false object. 
For example, when some visual sensors falsely detect an object, the falsely detected object’s 
position is propagated to other non-detecting visual sensors. Furthermore, a detected local 
object’s position has uncertainty, even if it represents a true identical object. In an outdoor 
environment, for example, a change detection algorithm may detect an object together with its 
shadow [19]. The local object positions corresponding to an identical object are then 
transformed into nonequivalent global object positions. The nonequivalent global object 
positions may be recognized as multiple objects. 

In this paper, we propose a method for combining local information from multiple visual 
sensors. Initially, we formulate a true/false decision problem for object detection and we 
present an optimal decision fusion method, which uses quality information for each local 
visual sensor. The use of quality information can minimize the propagation of falsely detected 
objects. The global object position identified by the global information center is also 
transferred to all the local visual sensors, and each visual sensor can track the object better 
based on the global object position. Thus, the global information center tracks the detected 
object based on the weighted sum of the local positions reported by the visual sensors. The 
main concept is the exchange of local and global information between local visual sensors and 
the generation of quality information from local visual sensors. 

The remainder of this paper is organized as follow. In Section 2, we introduce an application 
of object detection enhancement based on multiple sensors and the focal problems are 
described. In Section 3, we focus on a case where local information from multiple visual 
sensors is transferred to the global decision fusion center and the global decision is made based 
only on local information without information exchange. Local and global information 
exchange is discussed in Section 4, as well as the performance analysis. Finally, our 
conclusions are summarized in Section 5. 

2. System Model 

2.1 Application 

Fig. 1 shows a model of an application for the enhancement of object detection, where 
multiple visual sensors share an overlapping viewable range. If a visual sensor detects an 
object, e.g., visual sensor 1, the local information detected is transformed into a global 
coordinate at the global position fusion center. The global coordinate is then re-transformed 
into local information for all the visual sensors and any missing object detections can be 
recovered, i.e., by visual sensors 2 and 3 in the example. Thus, local object tracking by visual 
sensors 2 and 3 can improve improve the overall object tracking performance, even if visual 
sensors 2 and 3 do not participate in tracking the object. 

2.2 Problem Description 

Denote  as the j-th visual sensor, where 1, 2, , , where  is the number of visual 
sensors. If an object is detected by V , we denote the local position (information) of the 

detected object viewed by  as 	 , , where n is the discrete-time index. 
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The local object position  is transformed into a global object position in the global 

coordinates, which is denoted as 	 , . A perspective model is used for 
the surveillance system [20] during this local to global transformation. The global object 
position  of object j at time index n, can be re-transformed into the local object position, 

which is denoted as  or 	 n , . The local-global-local transformation using 

multiple visual sensors allows any missed local object position  to be recovered by , 
provided at least one visual sensor detects an object. 

 

 
 

Fig.  1. Application model for the enhancement of an object’s detection and tracking. 
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Fig.  2. If  detects an object but  and  do not detect an object,  and  are recovered 
based on the global information. 

 

 

Fig.  3. False object detection propagation during local and global information exchange. 
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Local and global information exchange can support missed detection recovery, but there is a 
risk of increased false detection propagated by a false local object position. Fig. 2 shows that 

 detects an object, whereas  and  do not. Therefore, the only detected local object 
position   is transformed into , which is re-transformed into the local object 
positions n , n  and n . Given the condition that an object is present, the missed 
object detections by  and  are recovered using n  and n . However, when no 
actual object (i.e. l  is obtained from a false detection), n  and n  are falsely 
(unnecessarily) recovered. Thus, the information exchange increases the number of false 
objects detected as shown in Fig. 3. We also need to consider minimizing the propagation of 
false object detection. 

If multiple visual sensors simultaneously detect an object, nonequivalent global object 
positions can be obtained, as shown in Fig. 4. More specifically, the local object positions, 

's, corresponding to a single object are transformed differently due to detection 
uncertainty (i.e.,  and  are transformed into  and ). Thus, a false local 
object position such as , increases the confusion by finding a final global object position. 
Therefore, the final global object position denoted as  or ,  should be 
evaluated based on  for all ’s that detect an object. This can be considered as an 
assignment problem given that some local object positions represent a true object whereas the 
others represent a false object. Furthermore, although  and  represent an identical 
true object,  and  do not necessarily coincide for . 

Throughout this paper, we minimize the false detection based on the recovery of incorrect 
local object position by filtering out the false detection. In addition, we find a single global 
object position given a mixture of true and/or false detections, so the local object positions 

 are enhanced in comparison with the original local object positions . We make use 
of the quality information during detection, where each visual sensor's coordinates are 
considered to have a confidence level, such that a global coordinate with a higher confidence 
level is attributed a higher emphasis. Note that in the rest of this paper, exchangeability refers 

to each local and global object position such as  or , ,  or 

, ,  or , , and  or , . 
 

 
Fig.  4. Illustration of local and global information exchange based on a mixture of true and/or false 

object detection with nonequivalent local to global transformation. 
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3. Theory of Global Decisions based on Local Information 

3.1 Binary Decision Problem based on Binary Local Information 

Fig. 5 shows the distributed detection system and the decision fusion center, where 
information from local visual sensors is fused to make a global decision. For an object, all 
signal processing is conducted locally at each sensor  and  each local decision is available as 

, where ∈ 0,1  for   1,2, ⋯, . More specifically, a binary hypothesis testing problem 
is formulated as  

:	 		 		 		 	  and   :	 		 		 		 	, 

while  is the local decision described as follow, 

0					 		 		 		 		 		 	 and 1					 		 		 		 		 		 	. 

The apriori probabilities of the two hypotheses are denoted as  and . 
We assume that  observations from  sensors are conditionally independent, where the 
conditional probability is denoted by | . More specifically, 0|  represent 
the probability that an object is missed, while 1|  represents the probability that a 
false source is detected. In addition, 1|  represents the probability that an object is 
detected when there is actually an object, while 0|  represents the probability that a 

false source is not detected. We denote the false and missing detection probabilities as  and 

, where the probabilities are equivalent to the following conditional probabilities: 

0| 			 			 1| .                            (1) 

After processing the source detections locally, a global decision is available in the decision 
fusion center as  by collecting all 's, where ∈ 0,1 . The global decision  is decided 
from , , ⋯ ,  where 0 1  if  is declared in the decision fusion center. 
The optimal decision rule begins with the maximum a posteriori probability (MAP) decision 
rule, which is equivalent to a minimum probability error (MPE) decision rule. The 
corresponding likelihood ratio test (LRT) is formulated as  

, , ⋯ ,
, ,⋯,

, ,⋯,

1
			≷

0
		.                                        (2) 

Based on this specification, the optimal decision fusion rule is that shown in (3) from [21], 
when only binary decisions from local sensors are available. 

, , ⋯ , log ∑ 	log ∑ 	log
1

				≷
0
0,                 (3) 

where  is the set of all  such that 1 and  is the set of all  where 0. Given 
the following conditional probabilities 
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≃ ≃ 	 	 ≃ ≃ , 	 , , 1, . . . ,                      (4) 

the optimal decision is simplified as  

≃ , . . . , ≃ log ⋅ log ⋅ log ,                  (5) 

where  is the element number of a set  while  is the element number of a set 
. In addition, when  is approximately equal to , the optimal decision is  

≃ , . . . , ≃ log ⋅ log .                       (6) 

Note that an implication of (4) is that identical performances are derived from the individual 
sensors and, given that assumption, it is natural that the global decision is based on the number 
of sensors that declare an object’s detection. 

 

 
 

Fig.  5. Distributed detection system with a decision fusion center. 

3.2 Binary Decision Problem based on Quality Local Information 

In a case where the local visual sensors only report their binary decisions, the decision is 
mainly dependent on the difference between  and , if the performance of the 
multiple sensors is identical. If , the decision fusion center is biased into 
making a decision, 1, regardless of how the information quality corresponding to each 
local decision , where ∈ , is degraded. Similarly, if , the decision 
fusion center is biased to make the opposite decision, 0, regardless of whether the quality 
information corresponding to each local decision , where ∈ , is enough to indicate the 
existence of an object. The overall decision can be improved if each visual sensor reports the 
local decision and its confidence level to the decision fusion center, or the confidence levels of 
each visual sensor are computed by the decision fusion center. 

The confidence level of the decision, the quality information, indicates the degree of 
confidence when 1, which is denoted by , where ∈  and 0 1. Note that 

 does not exist when 0. When  is close to zero,  has less confidence. However, 
when  is close to one,  has more confidence. Fig. 6 shows two possible optimal decision 
flows, which are classified based on the quality information availability. Fig. 6(a) shows that 
each sensor makes a local decision, before evaluating the corresponding quality information 
together. However, Fig. 6(b) shows that each sensor makes a local decision only, while the 



1408                                          Lee et al.: Local and Global Information Exchange for Enhancing Object Detection and Tracking 

quality evaluator supports the quality information.  
 

(a) (b) 

Fig.  6. Distributed detection system using an information fusion center. 

If we suppose that the quality information ,   1,2,⋯ , , is available, an optimum 
decision can also be made also using the MAP rule as follows: 

| , . . . , , , . . . , ≷ | , . . . , , , . . . , ,                  (7) 

where  indicates the degree of confidence for 1, where  is weighted by each 
corresponding quality information  as follows: 

| ⋅ , . . . , ⋅ ≷ | ⋅ , . . . , ⋅ .                      (8) 

Based on Bayes’ rule, the LRT is described as follow: 

⋅ ,..., ⋅ |

⋅ ,..., ⋅ |

⇒ 1

⇒ 0.
                                           (9) 

For simplicity, we denote ⋅  by , and the collection of the quality information 
, . . . ,  by : , while the left-hand side of (10) is simplified and decomposed as  

: |
: |

∏ 	
|

|
⋅ ∏ 	

|

|
  ,                                   (10) 

where A only relates to  given the condition 0, while B relates to both  and  
given the condition 1. Thus, the A for (11) is  

∏ 	
|

|
∏ 	

|

|
∏ 	

,

                                 (11) 

 while B for (11) is  
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∏ 	
|

|
∏ 	

| ⋅

| ⋅
∏ 	

⋅

⋅
.

                          (12) 

By substituting (12) and (13) and into (11), the log-LRT is 

log : log ∑ 	log ∑ 	log ∑ 	log 0 ⇒ 1
0 ⇒ 0.

(13) 

By considering the quality information  corresponding to the local decision , we reduce 
the decision bias as to the difference between  and . 

3.3 Data Combination Problem based on Quality Local Information 

We focus on making a better decision for  using the quality information . However, the 
apriori probabilities of the two hypotheses,  and , remain unsolved in (16). Furthermore, 
we should consider evaluating the global object position  to support missing detection 
recovery, as shown in Fig. 1. Thus,  is transformed into , i.e., the missing detection 
recovery. However, based on multiple visual sensors, the multiple detected local object 
positions  are transformed into multiple nonequivalent global object positions , ∈

. Note that , where ∈ , does not exist. 
 

 
Fig.  7. Distributed detection system based on the data fusion center. 

Fig. 7 shows that each collected and transformed global object position , where ∈ , is 
combined to produce the final result, , using the data fusion center. The role of the data fusion 
center is to find  among ’s based on the quality information  as  

: , : ,                                                     (14) 

where :  represents the set , . . . , , . . . , ∈ . The final result, , is obtained by 
weighting the quality information  on , as follow: 

: , :
∑ 	∈ ⋅

∑ 	∈
.

                                           (15) 
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4. Local and Global Information Exchange Algorithm 

In order to obtain the quality information, we first define a global object state  as  

                                     (16) 

where  and  are the true global object positions and velocities at 
time . Given the global object state  at a discrete time instant  ∈ 1,2,⋯ , this evolves 
according to  

1 ⋅ 1                                          (17) 

where  includes the Gaussian noise for an object position described as  

0, 0 0, 0                                        (18) 

where 1  is a dynamic transition function for 1 . More dynamic transition 
functions are introduced in [22]. 

From the perspective of Bayesian estimation, the posterior probability density function (PDF) 
for  is estimated by propagating the PDF over time [1]:  

| 1: ∝ | ⋅ | 1: 1 ,                     (19) 

where  represents a measurement at time , and 1:  represents the history of 
measurements up to time . Note that we use the time notation  in this section. Generally, the 
measurement term depends on the type of sensor and the application (i.e., TDE, signal strength 
and/or bearings from acoustic sensors [24][25][26]). In this paper, the measurement  is 
replaced by , which is obtained as 

1 ⋅ 1 ,                                            (20) 

where 1  is the final global object state at time 1 , and  represents 

̅ ̅ ̅ ̅ . Given that an object follows the dynamic model 1 , the 
weight  corresponding to  is evaluated when  is close to  as   
 

 exp ,                               (21) 

 
where  is obtained based on the 2-D Gaussian distribution function, which denotes the 
probability that an object corresponding to  and  follow the dynamic model 

1 . Given that an object moves according to a given dynamic model,  represents 
the quality information for  and : . 

The associated set ,  approximates the posterior pdf | 1:  as [1]  
 

1: ; ∑ 	
∑ 	

⋅ .                    (22) 
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Fig.  8. Illustration of the overall collaborative data flow for the object detection enhancement. 
Each component of  is weighted and averaged for the final global object state , 

which is based on a probability data association method (PDA) [23]. Thus,  and  

contribute to the final global object position for each corresponding  as  
 

 
∑ 	

∑ 	
,

∑ 	

∑ 	
.                                  (23) 

 
When the final global object position ,  is obtained, the position is evaluated, 
where ,  is close to ̅ , ̅  as  
 

exp .                                  (24) 

 
The evaluated  also denotes the probability that an object follows the dynamic model 

1 . If  is close to zero, the object is totally deviated from the position based on the 
dynamic model. However, if  is close to one, the object follows the dynamic model 
completely. Given a condition where an object moves according to a dynamic model,  
represents the apriori probability . Thus, the apriori probabilities are 

			 			 1 .                                  (25) 

The decision/data flow for object detection enhancement is summarized in Fig. 8. When the 
global information center collects the detected local object positions l , each 
corresponding  and the apriori probabilities,  and , are obtained given 

̅ , ̅  and , . The evaluated probabilities for ,  and , 
are delivered to the decision center, where  is declared. If 1, the final estimated 

global object position ,  is transformed into local object positions ,  
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for all visual sensors . Simultaneously,  and  are derived from 
,  and 1 , 1 , while the global object state g is applied 

recursively for ̅ 1 , ̅ 1  at the time 1 in (20). If 0, however, the 

global object position ,  and all detected local object positions ,  
are eliminated. 

5. Simulation and Experiments 

5.1 Simulation Results 

We investigated our proposed combined system using three visual sensors for each different 
scenario, i.e., the occlusion problem, shadow problem, and false detection problem. To 

achieve object detection enhancement, we assume that 0.2  and  is 
investigated with the Gaussian variance 1. 
 

Fig.  9. Original and enhanced detection (case 1). 
 

 
(a) Original detection 

 

(b) Global map: , 5.0, 5.0  
 

 
(c) Enhanced detection 
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In Fig. 9(a), visual sensor 1 did not detect an object due to an occlusion whereas the other two 
visual sensors correctly detected the object. Both detected local object positions were 
transformed into the global object position candidates as 5.2, 5.2  and 
4.9, 5.0 . Fig. 9(b) shows the surveillance environment that uses the global coordinates, 

including the visual sensor positions, viewable ranges, and the positions ,  and 
. Given the position  as (5.0, 5.0), the quality information  and  

corresponding to  and  are 0.9608 and 0.9950, respectively. The final global 
object position is (5.05, 5.10), while the corresponding  is 0.9938. Thus, the value for 
the overall decision is 2.78. Based on the true object declaration, the global information 
assisted enhanced object detection is shown in Fig. 9(c), where the missed local object 
position from visual sensor 1 is recovered.  

 

 

Fig.  10. Original and enhanced detection (case 2). 
In Fig. 10(a),  visual sensor 1 correctly detects an object whereas visual sensors 2 and 3 detect 
an object with a deviated local object position that is merged with a shadow. The three 
detected local object positions are transformed into the global object position candidate as 

13.0, 7.0 , 15.2, 7.4 , and 15.8, 6.9 . Fig. 10(b) also shows 
the surveillance environment global coordinates including the visual sensor positions, the 

 
(a) Original detection 

 

(b) Global map: , 13.1, 7.0  
 

 
(c) Enhanced detection 
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viewable ranges, and the positions , , , and . Given that the position 
 is (13.1, 7.0), the quality information , , and  corresponding to 
, , and  are 0.9950, 0.1018, and 0.026, respectively. The final global object 

position is (13.55, 7.18), while the corresponding  is 0.8892. The result for the overall 
decision is 0.13. Based on the true object declaration, the global information assisted object 
detection enhancement is shown in Fig. 10(c), where the deviated local object positions from 
visual sensors 2 and 3 are correctly recovered.  
 

 
(a) Original detection 

(b) Global map: , 4.9, 3.4  (out of viewable range) 

 
(c) Enhanced detection 

 
(d) based on (3) without apriori probabilities 

Fig.  11. Original and enhanced detection (case 3). 

In Fig. 11(a), visual sensors 1 and 2 detect a false object given that an object is positioned 
outside the viewable ranges. The detected local object position is transformed into the global 
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object position candidate as 7.3, 5.1  and 7.1, 6.3 . Fig. 11(b) also shows 
the surveillance environment with global coordinates including the visual sensor positions, the 
viewable ranges, and the positions , , and . Given that position  is (4.9, 
3.4), the quality information  corresponding to  and  are 0.0132 and 0.0013, 
respectively. The final global object position is (7.28, 5.21), while the corresponding  is 
0.0114. The overall decision value is -6.101. Based on the false object declaration, the global 
information assisted object detection enhancement is shown in Fig. 11(c), where all of the 
detected local object positions from visual sensors 2 and 3 are eliminated. As a performance 
comparison, Fig. 11(d) shows the result based on (3), which were considered using only  
without apriori probabilities (i.e. 0.5). The overall decision value is 0.4, so 
a true object is declared.  

5.2 Experimental Results 

In this experimental subsection, we verified our proposed combination system in an indoor 
environment. In the experiment, two cameras monitored the movements of three people in an 
indoor environment measuring 5.22 x 4.31 x 2.96m as shown in Fig. 12.  Cameras 1 and 2 
were placed at the positions (2.34 m, 0.12 m, 2.45 m) and (0.12 m, 2.32 m, 2.45 m), 
respectively, to monitor the movement of people from different viewing angles.  
 

 

Fig.  12. Illustration of the experimental environment, which measured 5.22m x 4.31m x 2.96m and 
contained two cameras 

In the experiment, we detected the face and the body, which corresponded to local 
information. The body and face were treated as a single moving object. We can reduce the 
likelihood of missing detection by using face and body during detection. In addition, each 
detected face and body was tracked using the dynamic transition function given in (17). The 
face was detected based on skin color information, whereas the body was detected based on 
motion [27][28]. From a global coordinates perspective, we used the multiple dynamic models 
given in (22) and (23), with α=0.05. Given the local information detected, our proposed 
combination system exchanged the local and global information between the two cameras, 
which corrected the missing and false detection, as shown in Fig. 13. In frame #1, Camera 2 
detected three people separately whereas Camera 1 had an overlapping view, which resulted in 



1416                                          Lee et al.: Local and Global Information Exchange for Enhancing Object Detection and Tracking 

Camera 1 Camera 2 Postion

B

A

C

Camera 1Camera 2

B

A

C

Postion

Camera 1 Camera 2

B

A

C

Postion

Camera 1 Camera 2

B
A

C

Postion

Camera 1 Camera 2

B

AC

Postion

Frame #1

Frame #4

Frame #9

Frame #12

Frame #15

 

Fig.  13. Results of indoor environment experiment 
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the detection of a single human. The detected local information was transformed into global 
information, which was re-transformed into the local information, and this was separated 
correctly into three people with Camera 1. In frame #4, Camera 1 initially detected three 
people correctly whereas Camera 2 had an overlapping view of two people. After local and 
global information exchange, Camera 2 separated three people correctly. Similarly, in frames 
#9, #12, and #15, the correct local information recovered incorrect local information via local 
and global exchange. 

5. Discussion and Conclusions 

In this paper, we proposed object detection enhancement based on the combination of multiple 
visual sensors. Given the estimated mean position obtained from a dynamic object model, 
each transformed global object position candidate was evaluated, which contributed to a final 
global object position. We also analyzed the dynamic object model and the object detection 
accuracy based on object detection enhancement. Finally, the performance was evaluated for 
occlusion, deviated detection, false detection, and overlapping scenarios. The root mean 
square error (RMSE) was 0.183 (m) in the global coordinates. With the perspective model, 
transformation errors occurred with different camera heights, tilt angles, and distances 
between a camera and an object. We expect that the error could be reduced by identifying 
appropriate camera parameters in future research. During this study, we limited the 
combinations to a constrained space that provided an overlapped viewable range for the visual 
sensors, but our future goal is to extend the capability of the proposed system so it can be 
applicable to a non-overlapped viewable range in a large space. We are also currently 
exploring the effect of incorrect local information. The propagation of incorrect local 
information is also important for the maintenance of the combined system, so our future goal is 
to find the method that minimizes the incorrect local information. Furthermore, we need to 
consider an association issue [29][30] in more complicated areas such as places where people 
move in and out, which would assign consistent identifications to each person detected. This 
association issue is now being considered for the combined system in future work. 

References 

[1] R. Feraud, O.J. Bernier, J.-E. Viallet and M. Collobert, “A fast and accurate face detection based 
on neural network,” IEEE Trans. on Signal Processing, vol.50, no.2, pp.174-188, Feb.2002. 
Article (CrossRef Link). 

[2] R. Hsu, M. Mottaleb and A. Jain, “Face detection in color images,”  IEEE Trans. on Patterns on 
Analysis and Machine Intelligence, vol.24, no.5, pp.696-706, May.2002. Article (CrossRef Link). 

[3] B. Heisele, T. Serre, M. Pontil and T. Poggio, “Component-based face detection,” in  Proc. of the 
2001 IEEE Conf. on Computer Vision and Pattern Recognition, pp.657-662, 2001. Article 
(CrossRef Link). 

[4] F. Xu, X. Liu and K. Fujimura, “Pedestrian detection and tracking with night vision,”  IEEE Trans. 
on Intelligent Transportation Systems, vol.6, no.1, pp.63-71, Mar.2005. Article (CrossRef Link). 

[5] R.J. Radke, S. Andra, O. A. Kofahi and B. Roysam, “Image change detection algorithms: A 
survey,”  IEEE Trans. on Image Processing, vol.14, no.3, pp.294-307, Mar.2005. Article 
(CrossRef Link). 

[6] Y. Wu and T.S. Huang, “Recent development in human motion analysis,”  Pattern Recognition, 
vol.36, no.3, pp.585-601, Mar.2003. Article (CrossRef Link). 

[7] R. Bodor, B. Jackson and N. Papanikolopoulos, “Vision-based human tracking and activity 
recognition,” in  Proc. of the 11th Mediterranean Conference on Control and Automation, 



1418                                          Lee et al.: Local and Global Information Exchange for Enhancing Object Detection and Tracking 

pp.18-20, Jun.2003. Article (CrossRef Link). 
[8] O. Javed, K. Shafique and M. Shah, “Hierarchical approach to robust background subtraction 

using color and gradient information,” in  Proc. of the IEEE Workshop on Motion and Video 
Computing, pp.22-27, Dec.2002. Article (CrossRef Link). 

[9] Y. Matsushita, K. Nishino, K. Ikeuchi and M. Sakauchi, “Illumination normalization with 
time-dependent intrinsic images for video surveillance,”  IEEE Trans. on Pattern Analysis and 
Machine Intelligence, vol.26, no.10, pp.1336-1347, Oct.2004. Article (CrossRef Link). 

[10] C. Stauffer and W. L. Grimson, “Learning patterns of activity using real-time tracking,”  IEEE 
Transaction on Pattern Analysis and Machine Intelligence, vol.22, no.8, pp.747-757, Aug.2000. 
Article (CrossRef Link). 

[11] M. Shah, O. Javed and K. Shafique, “Automated visual surveillance in realistic scenarios,”  IEEE 
Multimedia, vol.14, no.1, pp.30-39, Mar.2007. Article (CrossRef Link). 

[12] R. Collins, Y. Liu and M. Leordeanu, “On-line selection of discriminative tracking features,”  
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.27, no.10, pp.1631-1643, 
Oct.2005. Article (CrossRef Link). 

[13] S. Avidan, “Ensemble Tracking,”  IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol.29, no.2, pp.261-271, Feb.2007. Article (CrossRef Link). 

[14]  F. Tang and H. Tao, “Probabilistic object tracking with dynamic attributed relational feature 
graph,”  IEEE Transactions on Circuits and Systems for Video Technology, vol.18, no.8, 
pp.1064-1074, Aug.2008. Article (CrossRef Link). 

[15]  T. Yang, S. Li, Q. Pan and J. Li, “Real-time multiple objects tracking with occlusion handling in 
dynamic scenes,” in  Proc. of the 2005  IEEE Conf. on Computer Vision and Pattern Recognition, 
pp.970-975, Jun.2005. Article (CrossRef Link). 

[16] A. Senior, “Tracking people with probabilistic appearance models,” in  Proc. of the IEEE 
Workshop on Performance Evaluation of Tracking and Surveillance, pp.48-55, 2002. Article 
(CrossRef Link). 

[17] D. Greenhill, J. Renno, J. Orwell and G.A. Jones, “Occlusion analysis: Learning and utilizing 
depth maps in object tracking,” in  Proc. of Annual British Machine Vision Conf., vol.26, no.3, 
pp.430-441, Mar.2008. Article (CrossRef Link). 

[18] W. Hu, T. Tan, L. Wang and S. Maybank, “A survey on visual surveillance of object motion and 
behaviors,”  IEEE Transactions on Information Systems, Man, And Cybernetics - Part C: 
Applications and Reviews, vol.34, no 3, pp.334-352, Aug.2004. Article (CrossRef Link). 

[19] S. Chien, Y. Huang, B. Hsieh, S. Ma and L. Chen, “Fast video segmentation algorithm with 
shadow cancellation, global motion compensation and adaptive threshold techniques,”  IEEE 
Transactions on Multimedia, vol.6, no.5, pp.732-748, Oct.2004. Article (CrossRef Link). 

[20] M. Pollefeys, R. Koch and L. V. Gool, “Self-calibration and metric reconstruction in spite of 
varying and unknown intrinsic camera parameters,” in Proc. of the Sixth International Conference 
on Computer Vision, pp.90-95, Jan.1998. Article (CrossRef Link). 

[21] Z. Chair and P. K. Varshney, “Optimal data fusion in multiple sensor detection systems,”  IEEE 
Transactions on Aerospace and Electronic Systems, vol.22, no.1, pp.98-101, Jan.1986. Article 
(CrossRef Link). 

[22] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking-Part I,”  IEEE Trans. on 
Aerospace and Electronic Systems, vol.39, no.4, pp.1333-1364, Oct.2003. Article (CrossRef 
Link). 

[23] Y. B. Shalom and W. D. Blair,  Multitarget-Multisensor Tracking: Applications and Advances, 
Artech House Publishers, 2000. 

[24] D. B. Ward, E. A. Lehmann and R. C. Williamson “Particle filtering algorithms for tracking an 
acoustic source in a reverberant environment,”  IEEE Trans. Speech and Audio Processing, vol.11, 
no 6, pp.826-836, Nov.2003. Article (CrossRef Link). 

[25] J. Lim, J. Lee, S. Hong and P. Park, “Algorithm for detection with localization of multi-targets in 
wireless acoustic sensor networks,” in  Proc. of the 18th IEEE Int. Conference on Tools with 
Artificial Intelligence, pp.547-554, Nov.2006. Article (CrossRef Link). 

[26] M. S. Arulampalam, B. Ristic, N. Gordon and T. Mansell, “Bearings-only Tracking of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012                                           1419 

Manoeuvring targets using particle filters,”  EURASIP Journal on Applied Signal Processing, 
vol.2004, no.1, pp.2351-2365, Jan.2004. Article (CrossRef Link). 

[27] Z. Jin, Z Lou, J. Yang and Q. Sun, “Face detection using template matching and skin-color 
information”, Neurocomputing, vol.70, no.4-6, pp.794-800, Jan.2007. Article (CrossRef Link).  

[28] K. Park, J. Lee, M. Stanacevic, S. Hong and W. Cho, “Iterative object localization algorithm using 
visual images  with a reference coordinate”, EURASIP Journal on Image Video Processing, Article 
ID 256896, vol.2008. Article (CrossRef Link). 

[29] S. H. Cho, Y. Nam, S. Hong and W. D. Cho, "Locally initiating line-based object association in 
large scale multiple cameras environment," KSII Transactions on Internet and Information 
Systems, vol.4, no.3, pp.358-379, Jun.2010. Article (CrossRef Link). 

[30] S. H. Cho, Y. Nam and S. Hong, "Multiple camera collaboration strategies for dynamic object 
association," KSII Transactions on Internet and Information Systems, vol.4, no.6, pp.1169-1193, 
Dec.2010. Article (CrossRef Link). 

 
 
 
 

 

 

Jinseok Lee received the dual B.S. degree in electrical engineering from both Stony 
Brook University – State University of New York and Ajou University – Korea; and the 
Ph.D. degree in Electrical engineering from Stony Brook University.  Currently, he is a 
Postdoctoral Associate of Biomedical Engineering at Worcester Polytechnic Institute.  
His current research interests include medical instrumentation, biomedical signal 
processing, and modeling of physiological systems.   

Shung Han Cho received B.E. degree (Summa Cum Laude) with specialization in 
Telecommunications from both the department of Electronics Engineering at Ajou 
University, Korea and the department of Electrical and Computer Engineering at Stony 
Brook University - SUNY, NY in 2006. He was a recipient of Award for Academic 
Excellence in Electrical Engineering by College of Engineering and Applied Sciences at 
Stony Brook University. He received M.S. degree with Award of Honor in Recognition 
of Outstanding Achievement and Dedication and Ph.D. degree in Electrical and 
Computer Engineering from Stony Brook University in 2008 and 2010 respectively. He 
is currently a post-doctoral researcher at Stony Brook University. He was a recipient for 
International Academic Exchange Program supported by Korea Research Foundation 
(KRF) in 2005. He was a member of Sensor Consortium for Security and Medical Sensor 
Systems sponsored by NSF Partnerships for Innovation from 2005 to 2006. His research 
interests include collaborative heterogeneous signal processing, distributed digital image 
processing and communication, networked robot navigation and communication, 
heterogeneous system modeling.  

 



1420                                          Lee et al.: Local and Global Information Exchange for Enhancing Object Detection and Tracking 

 

Seong-Jun Oh (S’98-M’01-SM’10) is an Associate Professor at the Department of 
Computer and Communications Engineering, Korea University, Seoul, Korea. Before 
joining Korea University in September 2007, he was with Ericsson Wireless 
Communication, San Diego, CA, USA as a senior Engineer from September 2000 to 
March 2003 and with Qualcomm CDMA Technologies (QCT), San Diego, CA, USA as a 
Staff Engineer from September 2003 to August 2007. He received his B.S. (magna cum 
laude) and M.S. degrees in Electrical Engineering from Korea Advanced Institute of 
Science and Technology (KAIST) in 1991 and 1995, respectively, and received Ph.D. at 
the Department of Electrical Engineering and Computer Science, University of 
Michigan, Ann Arbor in September 2000. He served for Korean Army during 
1993-1994. His current research interests are in the area of wireless/mobile networks 
with emphasis on the next-generation (4G) cellular networks, resource allocation, and 
physical-layer modem implementation. While he was with Ericsson Wireless 
Communication, he has been an Ericsson representative for WG3 (physical layer) of 
3GPP2 standard meeting. While in QCT, he has developed CDMA modems in ASIC for 
base station and mobile station. He was a Vice-Chair of TTA PG 707, the Korean 
evaluation group registered in ITU-R, where he was in charge of performance 
evaluations of LTE-Advanced and IEEE 802.16m systems, submitted as IMT-Advanced 
technologies in ITU-R WP-5D. He has received the Seoktop Teaching Award from the 
College of Information and Communication, Korea University for outstanding lectures in 
fall semester of 2007 and spring semester of 2010. He was a recipient of the Korea 
Foundation for Advanced Studies (KFAS) Scholarship 1997-2000. 
 

Sangjin Hong received the B.S and M.S degrees in EECS from the University of 
California, Berkeley. He received his Ph.D in EECS from the University of Michigan, 
Ann Arbor. He is currently with the department of Electrical and Computer Engineering 
at Stony Brook University. Before joining Stony Brook University, he has worked at 
Ford Aerospace Corp. Computer Systems Division as a systems engineer. He also 
worked at Samsung Electronics in Korea as a technical consultant. His current research 
interests are in the areas of multimedia wireless communications and digital signal 
processing systems, reconfigurable VLSI Systems and optimization. Prof. Hong is a 
Senior Member of IEEE and a member of EURASIP journal editorial board. Prof. Hong 
served on numerous Technical Program Committees for IEEE conferences. 

 

 


