Abstract
This paper proposes real time object detection and tracking algorithm that can be applied to security and supervisory system field. A proposed system is devide into object detection phase and object tracking phase. In object detection, we suggest Adaptive background subtraction method and Adaptive block based model which are advanced motion detecting methods to detect exact object motions. In object tracking, we design a multiple vehicle tracking system based on Kalman filtering. As a result of experiment, motion of moving object can be estimated. the result of tracking multipul object was not lost and object was tracked correctly. Also, we obtained improved result from long range detection and tracking.
본 논문에서는 보안 및 감시 시스템 분야에 적용할 수 있는 실시간 객체 탐지 및 추적 알고리듬을 제안한다. 구현된 시스템은 객체 탐지 단계, 객체 추적 단계로 구성되었다. 객체탐지에서는 정화한 객체의 움직임 검출을 위한 향상된 검출 방법인 적응배경 차분법과 적응적 블록 기반 모델을 제안한다. 객체추적에서는 칼만 필터에 기반한 다중 물체 추적 시스템을 설계하였다. 실험결과 이동객체의 움직임을 추정할 수 있었고, 추적 과정에서도 다수의 객체를 잃어버리지 않고 정상적으로 추적할 수 있었다. 또한 원거리 탐지 및 추적에서 향상된 결과를 얻을 수 있었다.