Implementation of Adaptive Noise Canceller Using Instantaneous Gain Control Algorithm

순시 이득 조절 알고리즘을 이용한 적응 잡음 제거기의 구현

  • Lee, Jae-Kyun (Department of Computer and Communication Engineering Daegu University) ;
  • Kim, Chun-Sik (Department of Computer and Communication Engineering Daegu University) ;
  • Lee, Chae-Wook (Department of Computer and Communication Engineering Daegu University)
  • 이재균 (대구대학교 정보통신공학부) ;
  • 김춘식 (대구대학교 정보통신공학부) ;
  • 이채욱 (대구대학교 정보통신공학부)
  • Published : 2009.11.25

Abstract

Among the adaptive noise cancellers (ANC), the least mean square (LMS) algorithm has probably become the most popular algorithm because of its robustness, good tracking properties, and simplicity of implementation. However, it has non-uniform convergence and a trade-off between the rate of convergence and excess mean square error (EMSE). To overcome these shortcomings, a number of variable step size least mean square (VSSLMS) algorithms have been researched for years. These LMS algorithms use a complex variable step method approach for rapid convergence but need high computational complexity. A variable step approach can impair the simplicity and robustness of the LMS algorithm. The proposed instantaneous gain control (IGC) algorithm uses the instantaneous gain value of the original signal and the noise signal. As a result, the IGC algorithm can reduce computational complexity and maintain better performance.

다양한 적응 잡음 제거기 중에, LMS알고리즘은 강인성, 높은 추적성, 구현의 단순성 때문에 가장 많이 사용되는 알고리즘이다. 하지만, LMS알고리즘은 비균일적인 수렴과 수렴율과 EMSE-사이에 trade-off를 가진다. 이러한 단점을 극복하기 위해, 많은 가변 스텝 사이즈 알고리즘이 수년간 연구되고 있다. 이들 LMS알고리즘에서 보다 빠른 수렴속도를 위하여 복잡한 가변 스텝방식을 사용하는데 이는 많은 계산량을 필요로 한다. 이는 LMS알고리즘의 장점인 단순성과 강인성을 손상한다. 제안하는 IGC알고리즘은 원신호와 잡음신호의 순시 이득 값을 사용한다. 그 결과, IGC알고리즘은 계산량을 줄이고, 보다 높은 성능을 유지한다.

Keywords

References

  1. Boll, S. F. and D. C. Pulsipher, Suppression of acoustic noise in speech using two microphone adaptive noise cancellation, IEEE Trans. Acoust., Speech, Signal Processing, vol.ASSP-28, no.6, 1980
  2. Kim, Dai I. and P. De Wild, Performance analysis of the DCT-LM2S adaptive filtering algorithm, Signal Processing, vol.80, no.8, pp.1629-1654, 2000 https://doi.org/10.1016/S0165-1684(00)00098-0
  3. Widrow, B., et al., Adaptive noise canceling: principles and applications, Proc. IEEE, vol.63, pp.1692-1762, 1975 https://doi.org/10.1109/PROC.1975.10036
  4. R. H. Kwang and E. W. Johnston, A Variable Step Size LMS Algorithm, IEEE Trans. Signal Processing, vol.40, no.7, pp.1633-1642, 1992 https://doi.org/10.1109/78.143435
  5. T. Aboullnasr and K. Mayyas, A Robust Variable Step-Size LMS-Type Algorithm: Analysis and Simulations, IEEE Trans. Signal Processing, vol.45, no.3, pp.631-639, 1997 https://doi.org/10.1109/78.558478
  6. Joonwan Kim and Poularikas, A. D. , Comparison of two proposed methods in adaptive noise canceling, IEEE SSST 2003, pp.400-403, 2003
  7. Ho, K. C., A minimum misadjustment adaptive FIR filter, IEEE Trans. Signal Processing, vol.44, no.3, pp.577-585, 1996 https://doi.org/10.1109/78.489031
  8. Maxwell, J. A. and P. M. Zurek, Reducing acoustic feedback in hearing aids, IEEE Trans. Speech Audio Processing, vol.3, no.4, pp.304-313, 1995 https://doi.org/10.1109/89.397095
  9. Anrikulu, O. and A. G. Constantinides, The LMS algorithm with time-varying forgetting factor for adaptive system identification in additive output noise, ICASSP 96, pp.1851-1854, 1996
  10. Al-Saleh, M. A., Fast tracking two stage adaptive noise canceller, IEEE Region 10 Conference TENCON, pp.606-609, 2004
  11. Delgado, R. E., O. Ozadmar, S. Rahman and C. N. Lopez, Adaptive noise cancellation in a multimicrophone system for distortion product otoacoustic emission acquisition, IEEE Trans. Biomedical Engineering, vol.47, no.9, pp.1154-1164, 2000 https://doi.org/10.1109/10.867919
  12. Haykin, S., Adaptive Filter Theory, 4th ed., Upper Saddle River, NJ: Prentice Hall, 2002