• Title/Summary/Keyword: object clustering

Search Result 272, Processing Time 0.026 seconds

Refinement of Document Clustering by Using NMF

  • Shinnou, Hiroyuki;Sasaki, Minoru
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.430-439
    • /
    • 2007
  • In this paper, we use non-negative matrix factorization (NMF) to refine the document clustering results. NMF is a dimensional reduction method and effective for document clustering, because a term-document matrix is high-dimensional and sparse. The initial matrix of the NMF algorithm is regarded as a clustering result, therefore we can use NMF as a refinement method. First we perform min-max cut (Mcut), which is a powerful spectral clustering method, and then refine the result via NMF. Finally we should obtain an accurate clustering result. However, NMF often fails to improve the given clustering result. To overcome this problem, we use the Mcut object function to stop the iteration of NMF.

  • PDF

Object Extraction Technique Adequate for Radial Shape's RADAR Signal Structure (방사선 레이다 신호 구조에 적합한 물체 추적 기법)

  • 김도현;박은경;차의영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.536-546
    • /
    • 2003
  • We propose an object extraction technique adequate for the radial shape's radar signal structure for the purpose of implementing ARPA(Automatic Radar Plotting Aid) installed in the vessel. The radar signal data are processed by interpolation and accumulation to acquire a qualified image. The objects of the radar image have characteristics of having different shape and size as it gets far from the center, and it is not adequate for clustering generally. Therefore, this study designs a new vigilance distance model of elliptical shape and adopts this model in the ART2 neural network. We prove that the proposed clustering method makes it possible to extract objects adaptively and to separate the connected objects effectively.

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

Symbolic Cluster Analysis for Distribution Valued Dissimilarity

  • Matsui, Yusuke;Minami, Hiroyuki;Misuta, Masahiro
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.3
    • /
    • pp.225-234
    • /
    • 2014
  • We propose a novel hierarchical clustering for distribution valued dissimilarities. Analysis of large and complex data has attracted significant interest. Symbolic Data Analysis (SDA) was proposed by Diday in 1980's, which provides a new framework for statistical analysis. In SDA, we analyze an object with internal variation, including an interval, a histogram and a distribution, called a symbolic object. In the study, we focus on a cluster analysis for distribution valued dissimilarities, one of the symbolic objects. A hierarchical clustering has two steps in general: find out step and update step. In the find out step, we find the nearest pair of clusters. We extend it for distribution valued dissimilarities, introducing a measure on their order relations. In the update step, dissimilarities between clusters are redefined by mixture of distributions with a mixing ratio. We show an actual example of the proposed method and a simulation study.

Multiple Person Tracking based on Spatial-temporal Information by Global Graph Clustering

  • Su, Yu-ting;Zhu, Xiao-rong;Nie, Wei-Zhi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2217-2229
    • /
    • 2015
  • Since the variations of illumination, the irregular changes of human shapes, and the partial occlusions, multiple person tracking is a challenging work in computer vision. In this paper, we propose a graph clustering method based on spatio-temporal information of moving objects for multiple person tracking. First, the part-based model is utilized to localize individual foreground regions in each frame. Then, we heuristically leverage the spatio-temporal constraints to generate a set of reliable tracklets. Finally, the graph shift method is applied to handle tracklet association problem and consequently generate the completed trajectory for individual object. The extensive comparison experiments demonstrate the superiority of the proposed method.

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

A Clustering Method Based on Path Similarities of XML Data (XML 데이타의 경로 유사성에 기반한 클러스터링 기법)

  • Choi Il-Hwan;Moon Bong-Ki;Kim Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.342-352
    • /
    • 2006
  • Current studies on storing XML data are focused on either mapping XML data to existing RDBMS efficiently or developing a native XML storage. Some native XML storages store each XML node with parsed object form. Clustering, the physical arrangement of each object, can be an important factor to increase the performance with this storing method. In this paper, we propose re-clustering techniques that can store an XML document efficiently. Proposed clustering technique uses path similarities among data nodes, which can reduce page I/Os when returning query results. And proposed technique can process a path query only using small number of clusters as possible instead of using all clusters. This enables efficient processing of path query because we can reduce search space by skipping unnecessary data. Finally, we apply existing clustering techniques to store XML data and compare the performance with proposed technique. Our results show that the performance of XML storage can be improved by using a proper clustering technique.

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.

K-means Clustering using a Center Of Gravity for grid-based sample

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Clustering Characteristics and Class Hierarchy Generation in Object-Oriented Development (객체지향개발에서의 속성 클러스터링과 클래스 계층구조생성)

  • Lee Gun Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1443-1450
    • /
    • 2004
  • The clustering characteristics for a number of classes, and defining the inheritance relations between the classes is a difficult and complex problem in an early stage of object oriented software development. We discuss a traditional iterative approach for the reuse of the existing classes in a library and an integrated approach to creating a number of new classes presented in this study. This paper formulates a character-istic clustering problem for zero-one integer programming and presents a network solution method with illustrative examples and the basic rules to define the inheritance relations between the classes. The network solution method for a characteristic clustering problem is based on a distance parameter between every pair of objects with characteristics. We apply the approach to a real problem taken from industry.