• Title/Summary/Keyword: obesity mice

Search Result 612, Processing Time 0.026 seconds

Effects of Purslane Extract on Obesity and Diabetes in High-Fat Diet-Induced Obese Mice

  • Kang, Kwang-Soon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.7
    • /
    • pp.61-66
    • /
    • 2016
  • The frequency of obesity has risen dramatically in recent years but only few safe and effective drugs are currently available. In addition, obesity can induce type 2 diabetes (T2DM), hyperlipidemia and fatty liver disease. Recently, protective effect of purslane extract (PE) on obesity has been reported, but little is known about the role and mechanism of PE in obesity. This study aimed to evaluate the effect of PE on obesity and diabetes in obese mice. In addition, the effect of PE was compared with anti-obesity and diabetes drugs. High-fat diet (HFD)-induced obese mice were treated for 8 weeks with drugs as follows: PE, orlistat, metformin, voglibose or pioglitazone. While PE mixed with normal diet did not have any effects on BW in non-obese mice, PE mixed with HFD significantly reduced BW gain, insulin resistance, and glucose intolerance, without affecting food intake and appetite in obese mice. The effect was comparable to the effects of anti-obesity and diabetes drugs. Furthermore, PE significantly increased the activity of hepatocellular anti-oxidant enzymes, leading to protection of liver from oxidative stress in obese mice. These results suggest that PE treatment may be a useful tool for preventing obesity and complication of obesity.

Anti-Obesity and Anti-Diabetic Effects of a Polyherbal Extract Consisting of Coptidis Rhizoma, Salviae Miltiorrhizae Radix, and Cinnamomi Cortex in High Fat Diet-Induced Obesity Mice (고지방식이 유도 비만 마우스에서 황련, 단삼, 육계 복합추출물의 비만 개선 및 당뇨 예방 효과)

  • Jung, Su Min;Kwon, Se Eun;Kang, Seok Yong;Kim, Su Jin;Jung, Hyo Won;Park, Yong-Ki
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • Objectives: We investigated the effects of Clean-DM4 (C-DM4), a polyherbal extract consisting of Coptidis Rhizoma, Salviae Miltiorrhiza Radix, and Cinnamomi Cortex on high fat diet (HFD)-induced obesity and diabetes in mice. Methods: The C57BL/6 mice (6 weeks) were fed a HFD for 8 weeks and then administrated with C-DM4 extract at 500 mg/kg (p.o.) once daily for 4 weeks. The changes of body weights, calorie intakes, and fasting blood glucose (FBG) levels were measured in mice. The serum levels of glucose, insulin, total cholesterol, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured in mice by enzyme-based assay. It was also observed the histological changes of pancreas, liver, and fat tissues with hematoxylin and eosin (H&E) staining. Results: The increase of calorie intakes and FBG levels in HFD-induced obesity mice was significantly decreased by oral administration of C-DM4 extract. C-DM4 extract administration was significantly reduced the increased levels of glucose, insulin, total cholesterol, AST, and ALT in obesity mice. In addition, C-DM4 extract inhibited lipid droplet accumulation in liver tissues of obesity mice, hyperplasia of pancreatic islets, and enlargement of adipocytes in adipose tissues. Conclusions: Our study indicates that C-DM4 extract could help improve obesity and to prevent diabetes progression.

Difference in the Gut Microbiome between Ovariectomy-Induced Obesity and Diet-Induced Obesity

  • Choi, Sungmi;Hwang, Yu-Jin;Shin, Min-Jeong;Yi, Hana
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2228-2236
    • /
    • 2017
  • During menopausal transition, the imbalance of estrogen causes body weight gain. Although gut microbiome dysbiosis has been reported in postmenopausal obesity, it is not clear whether there is any difference in the microbiome profile between dietary-induced obesity and postmenopausal obesity. Therefore, in this study, we analyzed intestinal samples from ovariectomized mice and compared them with those of mice with high-fat diet-induced obesity. To further evaluate the presence of menopause-specific bacteria-gene interactions, we also analyzed the liver transcriptome. Investigation of the 16S rRNA V3-V4 region amplicon sequence profile revealed that menopausal obesity and dietary obesity resulted in similar gut microbiome structures. However, Bifidobacterium animalis was exclusively observed in the ovariectomized mice, which indicated that menopausal obesity resulted in a different intestinal microbiome than dietary obesity. Additionally, several bacterial taxa (Dorea species, Akkermansia muciniphila, and Desulfovibrio species) were found when the ovariectomized mice were treated with a high-fat diet. A significant correlation between the above-mentioned menopause-specific bacteria and the genes for female hormone metabolism was also observed, suggesting the possibility of bacteria-gene interactions in menopausal obesity. Our findings revealed the characteristics of the intestinal microbiome in menopausal obesity in the mouse model, which is very similar to the dietary obesity microbiome but having its own diagnostic bacteria.

Impact of High Fat Diet-induced Obesity on the Plasma Levels of Monoamine Neurotransmitters in C57BL/6 Mice

  • Kim, Minjeong;Bae, SeungJin;Lim, Kyung-Min
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.476-480
    • /
    • 2013
  • Obesity is one of the most serious health problems in developed countries. It negatively affects diverse aspects of human wellbeing. Of these, a relationship between obesity and depression is widely recognized but biomarkers for assessment of obesity-associated mood changes in animal obesity models are rarely known. Here we explored the link between obesity and the plasma levels of monoamine neurotransmitters involved in mood control using a sensitive UPLC/MSMS technique in high fat diet (HFD)-induced obesity model in male C57BL/6 mice to explore the potential utility of plasma tests for obesity-associated mood change. HFD (60% of total calories, 8 weeks) induced significantly higher weight gains in body (+37.8%) and fat tissue (+306%) in male C57BL/6 mice. Bioanalysis of serotonin, dopamine and norepinephrine in plasma at 8 weeks of HFD revealed that serotonin decreased significantly in the obese mice when compared to normal diet-fed mice ($2.7{\pm}0.6$ vs $4.3{\pm}2.0ng/ml$, N=8). Notably, a negative correlation was found between the levels of serotonin and body weight gains. Furthermore, principal component analysis (PCA) with the individual levels of neurotransmitters revealed that plasma levels of dopamine and serotonin could apparently differentiate the obese mice from lean ones. Our study demonstrated that blood plasma levels of neurotransmitters can be employed to evaluate the mood changes associated with obesity and more importantly, provided an important clue for understanding of the relationship between obesity and mood disorders.

Epac2a-knockout mice are resistant to dexamethasone-induced skeletal muscle atrophy and short-term cold stress

  • Song, Seung-Eun;Shin, Su-Kyung;Park, So-Young;Hwang, Il-Seon;Im, Seung-Soon;Bae, Jae-Hoon;Choi, Myung-Sook;Song, Dae-Kyu
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Exchange protein directly activated by cAMP (Epac) 2a-knockout (KO) mice exhibit accelerated diet-induced obesity and are resistant to leptin-mediated adipostatic signaling from the hypothalamus to adipose tissue, with sustained food intake. However, the impact of Epac2a deficiency on hypothalamic regulation of sympathetic nervous activity (SNA) has not been elucidated. This study was performed to elucidate the response of Epac2a-KO mice to dexamethasone-induced muscle atrophy and acute cold stress. Compared to age-matched wild-type mice, Epac2a-KO mice showed higher energy expenditures and expression of myogenin and uncoupling protein-1 in skeletal muscle (SM) and brown adipose tissue (BAT), respectively. Epac2a-KO mice exhibited greater endurance to dexamethasone and cold stress. In wild-type mice, exogenous leptin mimicked the responses observed in Epac2a-KO mice. This suggests that leptin-mediated hypothalamic signaling toward SNA appears to be intact in these mice. Hence, the potentiated responses of SM and BAT may be due to their high plasma leptin levels.

Evaluation of Efficacy of Aconitum carmichaeli Debx Extract on Obesity and Glucose Tolerance in Diet Induced Obese Mice (고지방식이로 유도된 비만형 동물모델에서 부자 물추출물의 비만 및 당대사 개선 효능 평가)

  • Song, Mi-Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.17 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • Objectives: This study investigated the effects of water extract of Aconitum carmichaeli Debx (ACD) on obesity and glucose tolerance in high fat diet induced obese mice. Methods: Five-week-old C5BL/6 mice were fed a high fat diet (HFD) containing or not containing ACD (100 or 300 mg/kg) for 16 weeks. Body weight, food intake, fasting blood glucose, and body temperature were checked every week and then organs, blood serums were collected after 16-week treatment. Furthermore oral glucose tolerance test (OGTT) was carried out after treatment. Results: ACD treated mice showed no significant decreases in body weight and adipose tissue weight as compared with HFD mice. Lipid accumulations in liver and serum lipid levels were not different between ACD treated and HFD mice. However, ACD extract administration significantly and dose-dependently reduced fasted plasma glucose and glucose tolerance as determined by OGTT. Conclusions: The present study demonstrates that ACD might prevent diet-induced glucose tolerance in mouse models of obesity.

Anti-obesity effect of Cynanchi Wilfordii Radix on High fat diet-induced obese mice (고지방식이(高脂肪食餌)로 유도된 동물모델에서 백수오(白首烏)의 항비만(抗肥滿) 효과)

  • Fang-lan, Ouyang;Seo, Bu Il
    • The Korea Journal of Herbology
    • /
    • v.34 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Objectives : Obesity is a public health concern associated with chronic diseases including hyperlipidemia, diabetes, fatty liver, atherosclerosis and cancer. As several anti-obesity drugs have been limited owing to their side effects, the development of new anti-obesity drugs through herbal medicines has been increasing. Cynanchum Wilfordii Radix (CW) traditionally is consumed for various health benefits including immune enhancing, anti-inflammation and anti-tumor activities. The aim of the present study is to evaluate the effects of CW on High fat diet (HFD)-induced obese mice. Methods : The mice were randomly divided into four groups (n=7). The mice were respectively fed a normal diet (ND), a high-fat diet (HFD), HFD plus CW (50 mg/kg/day), HFD plus CW (100 mg/kg/day). All groups were assayed for body weights, food efficiency ratio, blood biochemistry parameters, and organic tissue weights. Results : HFD-fed mice showed an increase in the body weight and serum biochemistry parameters levels (total cholesterol and triglycerides) as well as organic tissue weights. However, the administration of CW to obese mice induced a reduction in their body weight, food efficiency ratio, blood biochemistry parameters and weight of liver and fat compared with the HFD fed mice. Additionally, we observed that CW inhibited the lipid accumulation in liver and serum lipid parameter induced by HFD. Conclusions : Taken together, the findings of this study suggest that CW may be a potential agent for use in the treatment of obesity and obesity-related metabolic diseases.

Anti-obesity Effects of Genistein in Female Ovariectomy-induced Obese Mice (난소절제로 비만이 유도된 암컷 쥐에서 제니스테인의 항비만 효과)

  • Jeong, Sun-Hyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.427-435
    • /
    • 2017
  • To investigate whether genistein regulates menopause-induced obesity, it was studied the effects of genistein on anti-obesity effects in female ovariectomized (OVX) mice, an animal model of postmenopausal women. 7-week-old female mice (C57BL/6J) were randomly divided into three groups. All the animals received a high fat diet or a high fat diet supplemented with genistein for 8 weeks and variables and determinants of obesity were measured. The OVX mice had significantly higher body weight and adipose tissue mass than sham mice. However, genistein supplementation reduced body weight, adipose tissue mass, and adipocyte size of OVX mice. The OVX mice treated with genistein had significantly lower levels of serum triglycerides and total cholesterol than the vehicle-treated OVX mice. Lipid accumulation in liver was also markedly decreased by genistein in OVX mice. The results suggest that genistein can effectively prevent adiposity, adipocyte phertrophy, and llipid disorders caused by ovariectomy. Moreover, this study may contribute to the alleviation of metabolic syndrome, including obesity and hyerlipidemia in postmenopausal women.

Anti-obesity Effect of Berberine in Mice Fed a High Fat Diet

  • Hwang, Kwang-Hyun;Ahn, Ji-Yun;Kim, Sun-A;Ha, Tae-Youl
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.298-302
    • /
    • 2009
  • We investigated the anti-obesity effect of berberine in mice fed a high fat diet and focused on the analysis of adipogenesis in epdidymal adipose tissue. Male C57BL/6J mice were divided into three groups, which were fed either a normal diet (Nor), a high fat diet (HFD), or a high fat diet plus orally administered berberine (0.2 g /kg body weight) (HFD+B) for 8 weeks. Relative to mice in the HFD group, mice in the HFD+B group showed significant reductions in weight gain and adipose tissue weight. Serum triglyceride levels in mice from the HFD+B group were significantly lower than those of the HFD mice, as were the levels of serum insulin and leptin. An effect of berberine to reduce epididymal adipose mass was revealed by H&E staining. Berberine inhibited the high fat diet-induced increase in levels of the proteins CD36 and CCAAT/enhancer-binding protein $\alpha$ ($C/EBP{\alpha}$) observed in epididymal adipose tissues of mice from the HFD group. These results suggest that berberine has an anti-obesity effect in mice and that the effect is mediated by inhibition of adipogenesis.

The Mixed Herbal Extract, CAPA, Prevents Obesity and Glucose Intolerance in Obese Mice (비만형 동물모델에서 복합 한약 추출물 CAPA의 비만 및 당대사 개선 효능)

  • Song, Miyoung
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2017
  • Objectives: This study investigated the effects of the mixed herbal extract from Cinnamomum cassia Blume, Atractylodes macrocephala Koidzumi, Pueraria lobata Benth, and Aconitum carmichaeli Debx (CAPA) on obesity and glucose tolerance in obese mice. Methods: Animals were divided in 6 groups, normal diet, high fat diet (HFD), HFD with CAPA 100 mg/kg (CAPA 100), CAPA 300 mg/kg (CAPA 300), and metformin 200 mg/kg or lorcaserin 10 mg/kg as positive controls, and treated for 16 weeks. Body weight, food intake, fasting blood glucose, and body temperature were checked every week and then organs, blood serums were collected after treatment. The oral glucose tolerance test was also carried out after treatment. Results: Compared to HFD, CAPA extract treated mice showed significant decreases in body weight, adipose tissue weight, lipid accumulations in liver and serum lipid levels without a reduction of food intake. And fasting glucose and glucose tolerance were all improved in the CAPA treated mice. Conclusions: Our results suggest that CAPA extract can prevent diet induced obesity and glucose intolerance without a reduction of energy intake in obese mice.