• Title/Summary/Keyword: nusselt number

Search Result 584, Processing Time 0.027 seconds

Mixed Convection Heat Transfer from Vertical In-Line Plates (수직 배열된 평판에서 혼합대류 열전달)

  • Kim, S.Y.;Ree, J.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.123-130
    • /
    • 1991
  • The mixed convection heat transfer from vertical inline plates has been studied numerically by the finite difference method and experimentally with Mach-Zehnder interferometer. The dimensionless spacing, $s/L_1$, the relative length, $L_2/L_1$ and the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ are varied parametically. The lower plate mean Nusselt numbers show same values as $s/L_1$, ${\Phi}_2/{\Phi}_1$ and $L_2/L_1$ increase. The upper plate mean Nusselt numbers increase as $s/L_1$ and ${\Phi}_2/{\Phi}_1$ increase, but $L_2/L_1$ decreases. The upper plate mean Nusselt number is higher than the lower plate mean Nusselt for $s/L_1$ 1.8 at Re=100, $Gr=10^4$, Pr=0.71, $L_2/L_1=0.5$ and ${\Phi}_2/{\Phi}_1=1.0$. A comparison between the experimental and numerical results show good agreement.

  • PDF

Effect of Aspect Ratio of Enclosure with Inner Circular Cylinder on Three-Dimensional Natural Convection (원형 실린더가 존재하는 밀폐계의 종횡비 변화가 3차원 자연대류 현상에 미치는 영향)

  • Lee, Jeong Min;Seo, Young Min;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.717-726
    • /
    • 2016
  • This study evaluated the effect of aspect ratio of an enclosure with a heated inner circular cylinder on three-dimensional natural convection. The immersed boundary method was used to model the inner circular cylinder based on the finite volume method. The Rayleigh number was varied between $10^5$ and $10^6$, and the Prandtl number was maintained at 0.7. The aspect ratio of the three-dimensional enclosure was changed in steps of 1 within a range of 1-4 by increasing the width of the enclosure. In this study, the flow and thermal fields in the enclosure reached the steady state, and showed a mirror-symmetric pattern with respect to the center plane (x=0). In addition, the surface-averaged Nusselt number of the inner circular cylinder increased, while the total surface-averaged Nusselt number of the enclosure walls decreased with increase in the aspect ratio of the enclosure.

Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets- (단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군-)

  • Eom, Gi-Chan;Lee, Jong-Su;Geum, Seong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

Study on Natural Convection in a Rectangular Enclosure With a Heating Source

  • Bae, Kang-Youl;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2004
  • The natural convective heat transfer in a rectangular enclosure with a heating source has been studied by experiment and numerical analysis. The governing equations were solved by a finite volume method, a SIMPLE algorithm was adopted to solve a pressure term. The parameters for the numerical study are positions and surface temperatures of a heating source i.e., Y /H =0.25, 0.5, 0.75 and 11$^{\circ}C$ $\leq$ΔT$\leq$59$^{\circ}C$. The results of isotherms and velocity vectors have been represented, and the numerical results showed a good agreement with experimental values. Based on the numerical results, the mean Nusselt number of the rectangular enclosure wall could be expressed as a function of Grashof number.

Effect of Crust Increase on Natural Convection Heat Transfer in the Molten Metal Pool (용융 금속의 고화층 증가가 자연대류 열전달에 미치는 영향)

  • Park, Rae-Joon;Choi, Sang-Min;Kim, Sang-Baik;Kim, Hee-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.226-233
    • /
    • 1999
  • An experimental study has been performed on natural convection heat transfer with a rapid crust formation in the molten metal pool of a low Prandtl number fluid. Two types of steady state tests, a low and high geometric aspect ratio cases in the molten metal pool, were performed. The crust thickness by solidification was measured 88 a function of boundary surface temperatures. The experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool with a crust formation were compared with existing correlations. The experimental study has shown that the bottom surface temperature of the molten metal layer, in all experiments. is the major influential parameter in the crust formation, duo to the natural convection flow. The Nusselt number of the case without a crust formation in the molten metal pool is greater than that of the case with the crust formation at the same Rayleigh number. The present experimental results on the relationship between the Nusselt number and Rayleigh number In the molten metal pool match well with Globe and Dropkin's correlation. From the experimental results, a now correlation between the Nusslet number and Rayleigh number in the molten metal pool with the crust formation was developed as $Nu=0.0923(Ra)^{0.302}$ ($2{\times}10^4< Ra<2{\times}10^7$).

Computation of a Turbulent Natural Convection in a Rectangular Cavity with the Low-Reynolds-Number Differential Stress and Flux Model

  • Choi, Seok-Ki;Kim, Eui-Kwang;Wi, Myung-Hwan;Kim, Seong-O
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1782-1798
    • /
    • 2004
  • A numerical study of a natural convection in a rectangular cavity with the low-Reynolds-number differential stress and flux model is presented. The primary emphasis of the study is placed on the investigation of the accuracy and numerical stability of the low-Reynolds-number differential stress and flux model for a natural convection problem. The turbulence model considered in the study is that developed by Peeters and Henkes (1992) and further refined by Dol and Hanjalic (2001), and this model is applied to the prediction of a natural convection in a rectangular cavity together with the two-layer model, the shear stress transport model and the time-scale bound ν$^2$- f model, all with an algebraic heat flux model. The computed results are compared with the experimental data commonly used for the validation of the turbulence models. It is shown that the low-Reynolds-number differential stress and flux model predicts well the mean velocity and temperature, the vertical velocity fluctuation, the Reynolds shear stress, the horizontal turbulent heat flux, the local Nusselt number and the wall shear stress, but slightly under-predicts the vertical turbulent heat flux. The performance of the ν$^2$- f model is comparable to that of the low-Reynolds-number differential stress and flux model except for the over-prediction of the horizontal turbulent heat flux. The two-layer model predicts poorly the mean vertical velocity component and under-predicts the wall shear stress and the local Nusselt number. The shear stress transport model predicts well the mean velocity, but the general performance of the shear stress transport model is nearly the same as that of the two-layer model, under-predicting the local Nusselt number and the turbulent quantities.

Non-uniform wall temperature effect of the flow and heat transfer of a hot circular air jet impinging on a circular cylinder (비균일 벽면 온도가 원형 실린더에 충돌하는 고온 제트 유동 및 열전달에 미치는 영향)

  • Hong, Gi-Hyeok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.882-890
    • /
    • 1997
  • A buoyant jet flow impinging on a circular cylinder is investigated including heat conduction through the cylinder. Temperature and flow fields are obtained by an iterative method, and the effects of the non-uniform wall temperature on the flow and heat transfer are analyzed. Effects of three-dimensionality and the traversing of the jet are also included. Nusselt number over the cylinder surface for the conjugate case is relatively small as compared with the constant wall temperature case due to the small temperature gradient. As the conductivity of the cylinder becomes lower, Nusselt number decreases due to the reduced temperature gradient. Increasing jet traversing speed causes the surface temperature of the cylinder to decrease, which increases local Nusselt number over the surface.

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

A Numerical Study on the Natural Convection from a Square Beam with a Horizontal Adiabatic Plate (수평단열판에 부착된 등온사각비임에서의 자연대류 열전달에 관학 수치해석)

  • Bae, Sok-Tae;Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 1990
  • Steady laminar natural convection heat transfer from a square beam with a horizontal adiabatic plate has been studied numerically for various Grashof numbers and beam shapes. The heat transfer from a square beam increases as the dimensionless beam width W / L decreases. The mean Nusselt number of the upper surface is minimum at W / L = 1.0, maximum at W / L = 0.25 and that of the side surface is minimum at W / L = 0.25, maximum at W / L = 1.0. The increases of the total mean Nusselt number with increasing Grashof number is dominated by the beam width.

  • PDF

An Experimental Study on the Convection Heat Transfer of Al-Mg/water Micro Fluid in a Circular Tube with Swirl

  • Chang, Tae-Hyun;Kim, Chiwon;Kil, Sang-Cheol;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.869-875
    • /
    • 2012
  • In the past decades, extensive studies on convection heat transfer on internal flow have been conducted by using high specific surface area, by increasing heat transfer coefficient and swirl flow, and by improving the transport properties. In this study, we applied a tangential slot swirl generator to improve heat transfer in a horizontal circular copper tube. The Al-Mg particles (approximately $100{\mu}m$ to $130{\mu}m$) were employed for this experimental work. The copper tube was heated uniformly by winding a heating coil with a resistance of 9 ohm per meter for heat transfer. Using Al-Mg particles, experiments were performed in the Reynolds number range of 5,000 to 13,130, with and without swirl. Experimental data transfers or comparisons between Nusselt numbers with and without swirl along the test tube and Reynolds numbers are presented. The Nusselt number is improved by increasing Reynolds numbers or swirl intensities along the test tube.