• Title/Summary/Keyword: numerical testing

Search Result 850, Processing Time 0.027 seconds

A Suggestion of Method to Remove Bias Error of the FRF Obtained by FFT Analyzer - Application of TFS - (계측기에서 얻어진 주파수 응답 함수의 오차 제거 방안 - 전달함수 합성법에의 응용 -)

  • 김승엽;정의봉;서영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.408-413
    • /
    • 2003
  • The frequency response function(FRF) of each substructure is used for the transfer function synthesis method(TFS). The dynamic characteristics of the full system are obtained by synthesizing FRFs of each substructure. The validation of TFS depends on accuracy for FRF of each substructure. Impact hammer testing Is widely used to obtain the modal characteristics of structures However. the FRF obtained from impact hammer testing contains bias errors, such as finite record length error and leakage error of which characteristic depends on data acquisition time which we call record length. In this paper, a method to remove hose errors is proposed so as to enhance results of TFS. Numerical and experimental examples show that the FRF of full structure can be predicted nearly exactly by the method proposed in this paper.

  • PDF

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

On the Detection of Parameter Changes in Dynamical Systems for an Early Diagnosis of Cancer (암의 조기진단을 위한 계수변화 검출에 관한 연구)

  • Lee, Kwon-S.;Bae, Jong-Il.;Jeon, Gye-Rok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.748-750
    • /
    • 1995
  • An early detection of cancer is very important for the complete cure of cancer. Therefore, it is considered a diagnosis of cancer via the detection of an abrupt change from the healthy state to the cancerous state. It includes the development of algorithm for the detection of parameter change for conditionally-linear stochastic systems for the cancer diagnosis. The statistical testing is proposed to implement a parameter change algorithm. The detection algorithm studied in this research is based on sequential hypotheses testing in a so-called local asymptotic framework. Here a simple numerical example is provided to highlight some of the concepts and to provide a basis for further investigation. Despite its simplicity this research may have practical application in clinical oncology.

  • PDF

2-D Modeling of Electromagnetic Waves for the Probing of Concrete (콘크리트 내부 탐사를 위한 전자기파의 2차원 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.18-23
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 19.1 mm rebar embedded at 40 mm, 60 mm, and 80 mm depth are modeled in 3-dimension. As results, 2-D image processing scheme of modeling data has been developed and applied to the imaging of steel bars inside concrete.

  • PDF

Static Performance of Reinforced Soil Segmental Retaining Wall (블록식 보강토 옹벽의 정적성능 평가)

  • Koh Tae-Hoon;Lee Sung-Hyuck;Lee Jin-Wook;Hwang Seon-Keun;Park Sung-Hyun;Lee Seung-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.46-52
    • /
    • 2003
  • In this study, the full scale testing method of the geogrid-reiuorced soil Segmental Retaining Walll(SRW) under the simulated train loading were proposed in order to evaluate the applicability of reinforced soil SRW in railway embankment. The train loading was simulated by the design static wheel load and the impact coefficient due to the train passing velocity. This test was focused on the static performance of reinforced soil SRW in terms of the following measuring systems ; the horizontal earth pressure displacement acting on the facing block and the tensile strain along the geogrid. The data gathered from this full scale testing was compared with numerical analysis results by FLAC.

  • PDF

Multivariate Process Control Chart for Controlling the False Discovery Rate

  • Park, Jang-Ho;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.385-389
    • /
    • 2012
  • With the development of computer storage and the rapidly growing ability to process large amounts of data, the multivariate control charts have received an increasing attention. The existing univariate and multivariate control charts are a single hypothesis testing approach to process mean or variance by using a single statistic plot. This paper proposes a multiple hypothesis approach to developing a new multivariate control scheme. Plotted Hotelling's $T^2$ statistics are used for computing the corresponding p-values and the procedure for controlling the false discovery rate in multiple hypothesis testing is applied to the proposed control scheme. Some numerical simulations were carried out to compare the performance of the proposed control scheme with the ordinary multivariate Shewhart chart in terms of the average run length. The results show that the proposed control scheme outperforms the existing multivariate Shewhart chart for all mean shifts.

System Level ESD Analysis - A Comprehensive Review I on ESD Generator Modeling

  • Yousaf, Jawad;Lee, Hosang;Nah, Wansoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2017-2032
    • /
    • 2018
  • This study presents, for the first time, state-of-the art review of the various techniques for the modeling of the electrostatic discharge (ESD) generators for the ESD analysis and testing. After a brief overview of the ESD generator, the study provides an in-depth review of ESD generator modeling (analytical, circuit and numerical modeling) techniques for the contact discharge mode. The proposed techniques for each modeling approach are compared to illustrates their differences and limitations.

Analysis of RPC Probe Signal for S/G Tube in Nuclear Power Plant Considering Defect Factor (결함인자를 고려한 원전 SG세관에서의 RPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.53-55
    • /
    • 2005
  • The signals of the eddy current testing(ECT) for the examination of the steam generator(SG) tubes in the nuclear power plant(NPP) determine the existence, size, and kind of defects using the variation of impedance signals when a testing coil, driven by alternating current, passes through the SG tube contains defects. The aim of this paper is building a database of the RPC probe signals on the basis of the sizes variation of defects and frequency variation of probe. In this paper 3-D numerical analysis of the ECT signals using the finite element method is performed. Through this study, it is shown variation of magnitude and phase of impedance according to variation of defect size and frequency. From the result of this paper, we can obtain the information which is useful in defect discrimination of SG tube in nuclear power plant.

  • PDF

Geometric calibration of a computed laminography system for high-magnification nondestructive test imaging

  • Chae, Seung-Hoon;Son, Kihong;Lee, Sooyeul
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.816-825
    • /
    • 2022
  • Nondestructive testing, which can monitor a product's interior without disassembly, is becoming increasingly essential for industrial inspection. Computed laminography (CL) is widely used in this application, as it can reconstruct a product, such as a printed circuit board, into a three-dimensional (3D) high-magnification image using X-rays. However, such high-magnification scanning environments can be affected by minute vibrations of the CL device, which can generate motion artifacts in the 3D reconstructed image. Since such vibrations are irregular, geometric corrections must be performed at every scan. In this paper, we propose a geometry calibration method that can correct the geometric information of CL scans based on the image without using geometry calibration phantoms. The proposed method compares the projection and digitally reconstructed radiography images to measure the geometric error. To validate the proposed method, we used both numerical phantom images at various magnifications and images obtained from real industrial CL equipment. The experiment results confirmed that sharpness and contrast-to-noise ratio (CNR) were improved.

One-Dimensional Consolidation Simulation of Kaolinte using Geotechnical Online Testing Method (온라인 실험을 이용한 카올리나이트 점토의 일차원 압밀 시뮬레이션)

  • Kwon, Youngcheul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.247-254
    • /
    • 2006
  • Online testing method is one of the numerical experiment methods using experimental information for a numerical analysis directly. The method has an advantage in that analysis can be conducted without using an idealized mechanical model, because mechanical properties are updated from element test for a numerical analysis in real time. The online testing method has mainly been used for the geotechnical seismic engineering, whose major target is sand. A testing method that may be applied to a consolidation problem has recently been developed and laboratory and field verifications have been tried. Although related research thus far has mainly used a method to update average reaction for a numerical analysis by positioning an element tests at the center of a consolidation layer, a weakness that accuracy of the analysis can be impaired as the thickness of the consolidation layer becomes more thicker has been pointed out regarding the method. To clarify the effectiveness and possible analysis scope of the online testing method in relation to the consolidation problem, we need to review the results by applying experiment conditions that may completely exclude such a factor. This research reviewed the results of the online consolidation test in terms of reproduction of the consolidation settlement and the dissipation of excess pore water pressure of a clay specimen by comparing the results of an online consolidation test and a separated-type consolidation test carried out under the same conditions. As a result, the online consolidation test reproduced the change of compressibility according effective stress of clay without a huge contradiction. In terms of the dissipation rate of excess pore water pressure, however, the online consolidation test was a little faster. In conclusion, experiment procedure needs to improve in a direction that hydraulic conductivity can be updated in real time so as to more precisely predict the dissipation of excess pore water pressure. Further research or improvement should be carried out with regard to the consolidation settlement after the end of the dissipation of excess pore water pressure.