• Title/Summary/Keyword: numerical test

Search Result 4,780, Processing Time 0.034 seconds

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

Numerical Studies of Transient Opposed-Flow Flames using Adaptive Time Integration

  • Im, Hong-Geun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.103-112
    • /
    • 2000
  • Numerical simulations of unsteady opposed-flow flames are performed using an adaptive time integration method designed for differential-algebraic systems. The compressibility effect is considered in deriving the system of equations, such that the numerical difficulties associated with a high-index system are alleviated. The numerical method is implemented for systems with detailed chemical mechanisms and transport properties by utilizing the Chemkin software. Two test simulations are performeds hydrogen/air diffusion flames with an oscillatory strain rate and transient ignition of methane against heated air. Both results show that the rapid transient behavior is successfully captured by the numerical method.

  • PDF

A Study on Effects of Failure Behaviour of Tunnel Using A Numerical Analysis (수지해석에 의한 터널의 파괴거동에 미지는 영향분석)

  • 김영민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.309-314
    • /
    • 1999
  • In this paper, an application of finite element procedure fur tunnel failure analysis has been studied. The numerical model is applied to the simulation of a series of plane strain laboratory tests on the small scale model of a shallow tunnel. By comparing experimental and numerical results some conclusions are drawn on the effectiveness of the numerical approach. The findings from these numerical experiments show relative differences in the pattern of failure behaviour for shallow tunnels.

  • PDF

Laboratory experiment on the assessment of the ground strength with corestone (실내실험을 통한 핵석지반의 강도정수 산정연구)

  • 이수곤;김동은;황의성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition (과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Lee, Seung-Joo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

Hudraulic Model Test and Numerical Analysis of the Surge Tank (조압수조의 수리모형실험과 수치해석)

  • 노재화;이희영
    • Water for future
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 1984
  • The whole process from the model design to the results of the test, of hydraulic model test of restricted entry surge tank of Hapcheon dam, is reviewed with the respect to the flowchart of the experiment. And the experimental results are compared with the numerical values which are calculated by Runge-Kutta-Gill scheme. The comparision show a reasonable agreement. In final design, it doesn't matter that only numerical values are considered in case of the short design period, or difficulties of budget, and or the comparably simple type surge tank as Hapcheon dam.

  • PDF

Numerical Investigation about the Ground Test Results of Model Scramjet Engine (모델 스크램제트 엔진의 지상시험결과에 대한 전산해석연구)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.328-331
    • /
    • 2008
  • In order to see the detailed characteristics of model scramjet engine, numerical analysis was performed and compared to the ground test results done by KARI and UQ. Pressure distribution predicted by numerical analysis showed good agreements with test results. Static temperature and pressure distribution explained the mechanisms of cavity flame holder and W-shape cowl which have showed enhancing effects on the supersonic combustion.

  • PDF

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

A Muffler with Ventilation Holes for a 40 mm Medium Caliber Gun (40 mm 중구경 화포용 천공형 소음기 설계)

  • Lee, Hae-Suk;Hong, Jun-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.479-485
    • /
    • 2016
  • A 40 mm medium caliber gun to be equipped with ventilation holes is designed and manufactured in this study. The muffler used is composed of holes, blades, and several spaces in the tube. Accordingly, a numerical analysis is performed with computational fluid dynamics (CFD) before testing the muffler. The validity of the numerical analysis is examined by analyzing the differences between the measured data of the firing test and the results of the CFD analysis. The CFD analysis showed that the numerical analysis can be used positively in the muffler design because no difference exists between the results of the field test and the CFD analysis. The test result also indicated a noise reduction of approximately 10 dB. Moreover, the muzzle velocity is almost equivalent, regardless of the muffler.

A Numerical Study of Hydrodynamic Forces Acting on Rudders (수치 해석에 의한 단독 타 유체력 계산)

  • 부경태;지용해;김윤수;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, flow around rudder is analyzed by utilizing the numerical calculation, and the rudder open water test is performed to validate the calculation. The aim of this study is to design the new rudder shape to improve manoeuvring performance. In first, flow around two-dimensional rudder section is analyzed to understand the characteristics of section profile. And the calculation for all-movable rudders is performed and compared with results of rudder open water test. It is hard to numerically predict the drag force because the value is sensitive to the turbulence modeling and grid spacing near the wall. However, the lift force is predicted well. And we can prove that concave profile of the rudder section produce more lift and torque than convex one as a experiment. However PANEL method that ignore viscous effect cannot distinguish the difference of them. So, we can look for the numerical tool to be developed the new rudder shape.