• 제목/요약/키워드: numerical parametric study

검색결과 1,013건 처리시간 0.026초

파라메트릭 횡동요 수치해석의 민감도 및 불확실성에 대한 연구 (Study on Numerical Sensitivity and Uncertainty in the Analysis of Parametric Roll)

  • 박동민;김태영;김용환
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.60-67
    • /
    • 2012
  • This study considers the numerical analysis on parametric roll for container ships. As a method of numerical simulation, an impulse-response-function approach is applied in time domain. A systematic study is carried out for the parametric roll of two container ships, particularly observing the sensitivity of computational results to some parameters which can affect the analysis of parametric roll. The parameters to be considered are metacentric height (GM), simulation time window, and the discretization of wave spectrum. Based on the result of parametric roll simulation, numerical sensitivity and uncertainty in computational analysis are discussed.

Parametric numerical study of wind barrier shelter

  • Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.75-93
    • /
    • 2015
  • This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.

스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 성능에 대한 매개변수 연구 (A parametric study on the performance of heat pump using standing column well(SCW))

  • 장재훈;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.625-630
    • /
    • 2010
  • Parametric study was performed using the SCW numerical model for evaluating the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth well diameter, dip tube diameter, bleeding rate, were used in the study. Numerical simulations were performed for short-term (24-hour) simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

  • PDF

피스톤 타입 조파기의 형상 매개변수에 대한 조파성능 연구 (A Parametric Study of the Wave-Generation Performance of a Piston-Type Wave Maker)

  • 권도수;김성재;구원철
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.504-509
    • /
    • 2019
  • The wave-generation performance of a piston-type wave maker was analyzed using the numerical wave tank technique, and the numerical results were compared with theoretical solutions. A two-dimensional frequency domain analysis was conducted based on the Rankine panel method. Various parameters were used to examine the wave-generation performance, such as the width and gap of the wave board. The effects of the thickness of the wave board and of the gap from the bottom of the tank were evaluated. The difference in the amplitude of the generated wave between the analytical solution and the numerical result was examined, and its causes were addressed due to the gap flow between the bottom of the tank and the wave board. This parametric analysis can be utilized to design an optimum wave make parametric analysis to design an optimum wave maker that can generate waves with amplitudes that can be predicted accurately.

해양 K-Joint 구조의 수치해석 연구 (Numerical Parametric Study of Offshore K-Joint Structure)

  • 박관규;임성우;조철희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.603-611
    • /
    • 2006
  • The fundamental joint configuration that is often applied in offshore structures is the K-joint. The paper describes a numerical parametric study for K-joint parameters (using the finite element program) and compared with results of the experimental test. The stress effects of various parameters including $\alpha,\;\beta,\;\gamma,\;\tau\;and\;\theta$ were investigated. The paper introduces the stress distributions as per each parameter. From the study, the maximum stress of joint became different according to the variation of joint parameters.

  • PDF

다양한 형상의 마이크로 채널 내 밀도 차를 가진 다상 층류 유동의 특성에 대한 매개변수 연구 (Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels)

  • 백승호;김동성;최영기
    • 대한기계학회논문집B
    • /
    • 제33권10호
    • /
    • pp.783-788
    • /
    • 2009
  • In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow.

보강토 옹벽의 파괴거동에 대한 수치해석적 연구 (The Study of Numerical Analysis on Failure Behavior of Reinforced Soil Wall)

  • 김영민
    • 한국지반신소재학회논문집
    • /
    • 제7권3호
    • /
    • pp.9-16
    • /
    • 2008
  • 본 논문에서는 보강토 옹벽의 파괴거동을 탄소성이론에 의한 수치해석적으로 평가에 관한 연구내용을 다루었다. 우선, 보강토 옹벽의 기본적인 파괴거동에 대하여 검토하였다. 유한요소법을 사용하여 보강토 옹벽의 파괴거동에 영향을 미치는 주요 요인에 대하여 매개변수연구를 실시하였다. 주 검토목적으로는 보강토 옹벽의 파괴형상에 미치는 요인 및 영향에 대하여 분석하는 것이다. 뒤채움흙의 마찰각, 보강재 종류, 보강재 길이에 따른 파괴거동에 미치는 영향에 대하여 수치해석적 분석을 하였다.

  • PDF

파라메트릭 사양필터를 이용한 트러스 구조물의 손상 검출 (Damage Detection of Truss Structures Using Parametric Projection Filter Theory)

  • 문효준;서일교
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.29-36
    • /
    • 2004
  • In this paper, a study of damage detection for 2-Dimensional Truss Structures using the parametric projection filter theory is presented. Many researchers are interested in inverse problem and one of solution procedures for inverse problems that are very effective is the approach using the filtering algorithm in conjunction with numerical solution methods. In filtering algorithm, the Kalman filtering algorithm is well known and have been applied to many kind of inverse problems. In this paper, the Parametric projection filtering in conjunction with structural analysis is applied to the identification of damages in 2-D truss structures. The natural frequency and modes of damaged truss model are adopted as the measurement data. The effectiveness of proposed method is verified through the numerical examples.

  • PDF

삼각형 내부냉각유로에 설치된 다양한 형태의 리브에 관한 수치해석적 연구 (Numerical Study on Various Ribs in a Triangular Internal Cooling Channel)

  • 박민정;문미애;김광용
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.19-26
    • /
    • 2012
  • In this paper, a parametric study on ribs which are installed in an equilateral triangular internal cooling channel is presented. The numerical analysis of the flow structure and heat transfer characteristics is performed using three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. The numerical results are obtained at Reynolds number, 20,000. The parametric study is performed for the parameters, the angle of a rib, rib pitch-to-hydraulic diameter ratio, rib width-to-hydraulic diameter ratio, and rib height-to-hydraulic diameter ratio. The computational results are validated with the experimental data for area-averaged Nusselt number.

Shape optimization of corner recessed square tall building employing surrogate modelling

  • Arghyadip Das;Rajdip Paul;Sujit Kumar Dalui
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.105-120
    • /
    • 2023
  • The present study is performed to find the effect of corner recession on a square plan-shaped tall building. A series of numerical simulations have been carried out to find the two orthogonal wind force coefficients on various model configurations using Computational Fluid Dynamics (CFD). Numerical analyses are performed by using ANSYS-CFX (k-ℇ turbulence model) considering the length scale of 1:300. The study is performed for 0° to 360° wind angle of attack. The CFD data thus generated is utilised to fit parametric equations to predict alongwind and crosswind force coefficients, Cfx and Cfy. The precision of the parametric equations is validated by employing a wind tunnel study for the 40% corner recession model, and an excellent match is observed. Upon satisfactory validation, the parametric equations are further used to carry out multiobjective optimization considering two orthogonal force coefficients. Pareto optimal design results are presented to propose suitable percentages of corner recession for the study building. The optimization is based on reducing the alongwind and crosswind forces simultaneously to enhance the aerodynamic performance of the building.