• Title/Summary/Keyword: numerical oscillation

Search Result 371, Processing Time 0.022 seconds

Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion (주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석)

  • Choi, Jeong-Yeol;Jeung, In-Seuck;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Development of the wet and dry treatment using quadtree grids (사면구조 격자를 이용한 이동경계 기법 개발)

  • Kim, Jong-Ho;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.183-186
    • /
    • 2008
  • All measures to cope with flooding rely on flood predictions to some extent, and the effectiveness of these measures is dependent on the quality of flood predictions. It is important to track properly the movements of the river-bankline in numerical modeling because the location of it varies continuously in the flood inundation. In this study, the wet and dry treatment is used to describe the moving river-bankline accurately (Cho, 1996). An oscillatory flow motion in a parabolic basin is used to validate the performance of the developed model based on quadtree grids. As a result of a simulation, a reasonable agreement is observed with analytical and Cho's results.

  • PDF

Development of HVDC System Simulator Using MATLAB (MATLAB을 이용한 HVDC 시스템 시뮬레이터 개발)

  • Cho, Shin;Park, In-Gyu;Ahn, Tae-Chop
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1346-1348
    • /
    • 2005
  • 디지털 프로세서의 성능이 크게 향상됨에 따라 HVDC(High Voltage Direct Current) 시스템의 제어에 고급 지능형 제어 기술의 적용이 연구되고 있다. 이러한 연구의 일환으로, 본 논문에서는 MATLAB을 이용한 HVDC 시스템 시뮬레이터의 개발 결과를 소개한다. 시뮬레이터는 MATLAB의 프로그램 언어와 행렬 연산 기능을 이용하였으며, 회로의 수식화는 전압원 및 스위칭 소자, 변압기를 포함할 수 있는 수정된 마디 해석법(modified nodal analysis)을 사용하였고, 적분법은 Backward Euler 적분법을 사용하여 수치적 진동(numerical oscillation) 문제가 발생하지 않도록 하였다. 개발 결과, 본 시뮬레이터가 향후의 HVDC 시스템 지능형 제어 기술 연구에 유용하게 활용될 것으로 기대한다.

  • PDF

Numerical Analysis of Anode Sheath Structure Shift in an Anode-layer Type Hall Thruster

  • Yokota, Shigeru;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.602-605
    • /
    • 2008
  • The anode sheath structure in the hollow anode of an anode-layer type Hall thruster was numerically computed using a fully kinetic 2D3V Particle-in-Cell and Direct Simulation Monte Carlo(PIC-DSMC) code. By treating both ions and electrons as particles, anode surface region, which is electrically non-neutral, was analyzed. In order to analyze in detail, the calculation code was parallelized using Message Passing Interface (MPI). The code successfully simulated the discharge current oscillation. In the low magnetic induction case, ion sheath appears in the anode surface because ionization is enough to maintain the plasma occurs in the anode hollow. As the magnetic induction increases, main ionization region move to outside of the anode. At the same time, anode sheath voltage decreases. In the high magnetic induction case, electron sheath appears on the anode surface periodically because the ionization occurs mainly in the discharge channel. This anode sheath condition shift can be explained using the simple sheath model.

  • PDF

Flow Instability of Cryogenic Fluid in the Downstream of Orifices

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.413-418
    • /
    • 2008
  • Flow instability in the rocket turbo pump system can be caused by various reasons such as valve, orifice and venturi, etc. The inception of cavitation, especially in the propellant feeding system, is the primary cause of the mass flow and pressure oscillation due to cyclic formation and depletion of cavitation. Meanwhile, the main propellant in liquid rocket engine is the cryogenic one, which is very sensitive to temperature variation, and the variation of propellant properties caused by thermodynamic effect should be accounted for in the flow analysis. The present study focuses on the formation of cryogenic cavitations by adopting IDM model suggested by Shyy and coworkers. Also, the flow instability was investigated in the downstream of orifice by using a developed numerical code. Calculation results show that cryogenic cavitations can lead to flow instability resulting in mass flow fluctuations due to pressure oscillations. And the prediction of cavitations in cryogenic fluid is of vital importance in designing feeding system of LRE.

  • PDF

Multiple input describing function analysis of non-classical aileron buzz

  • Zafar, Muhammad I.;Fusi, Francesca;Quaranta, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.203-218
    • /
    • 2017
  • This paper focuses on the computational study of nonlinear effects of unsteady aerodynamics for non-classical aileron buzz. It aims at a comprehensive investigation of the aileron buzz phenomenon under varying flow parameters using the describing function technique with multiple inputs. The limit cycle oscillatory behavior of an asymmetrical airfoil is studied initially using a CFD-based numerical model and direct time marching. Sharp increases in limit cycle amplitude for varying Mach numbers and angles of attack are investigated. An aerodynamic describing function is developed in order to estimate the variation of limit cycle amplitude and frequency with Mach number and angle of attack directly, without time marching. The describing function results are compared to the amplitudes and frequencies predicted by the CFD calculations for validation purposes. Furthermore, a limited sensitivity analysis is presented to demonstrate the potential of the approach for aeroelastic design.

Critical Free Surface Flows in a Sloshing Tank

  • Scolan, Y.M
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • There are many issues in fluid structure interactions when dealing with the free surface flows in a sloshing tank. For example the problem of how yielding a highly nonlinear wave with a simple forced motion over a short duration is of concern here. Nonlinear waves are generated in a rectangular tank which is forced horizontally; its motion consists of a single cycle of oscillation. One of the objectives is to end up with a shape of the free surface yielding a wide range of critical flows by tuning few parameters. The configuration that is studied here concerns a plunging breaker accompanied with a critical jet where great kinematics are simulated. The numerical simulations are performed with a twodimensional code which solves the fully nonlinear free surface boundary conditions in Potential Theory.

Nonlinear dynamic responses of cracked atomic force microscopes

  • Alimoradzadeh, M.;Akbas, S.D.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.747-756
    • /
    • 2022
  • This study presents the nonlinear free and forced vibrations of a cracked atomic force microscopy (AFM) cantilever by using the modified couple stress. The cracked section of the AFM cantilever is considered and modeled as rotational spring. In the frame work of Euler-Bernoulli beam theory, Von-Karman type of geometric nonlinear equation and the modified couple stress theory, the nonlinear equation of motion for the cracked AFM is derived by Hamilton's principle and then discretized by using the Galerkin's method. The semi-inverse method is utilized for analysis nonlinear free oscillation of the system. Then the method of multiple scale is employed to investigate primary resonance of the system. Some numerical examples are presented to illustrate the effects of some parameters such as depth of the crack, length scale parameter, Tip-Mass, the magnitude and the location of the external excitation force on the nonlinear free and forced vibration behavior of the system.

Effects of Angles of Attack and Throttling Conditions on Supersonic Inlet Buzz

  • NamKoung, Hyuck-Joon;Hong, Woo-Ram;Kim, Jung-Min;Yi, Jun-Sok;Kim, Chong-Am
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.296-306
    • /
    • 2012
  • A series of numerical simulations are carried out to analyze a supersonic inlet buzz, which is an unsteady pressure oscillation phenomenon around a supersonic inlet. A simple but efficient geometry, experimentally adopted by Nagashima, is chosen for the analysis of unsteady flow physics. Among the two sets of simulations considered in this study, the effects of various throttling conditions are firstly examined. It is seen that the major physical characteristic of the inlet buzz can be obtained by inviscid computations only and the computed flow patterns inside and around the inlet are qualitatively consistent with the experimental observations. The dominant frequency of the inlet buzz increases as throttle area decreases, and the computed frequency is approximately 60Hz or 15% lower than the experimental data, but interestingly, this gap is constant for all the test cases and shock structures are similar. Secondly, inviscid calculations are performed to examine the effect regarding angle of attack. It is found that patterns of pressure oscillation histories and distortion due to asymmetric (or three-dimensional) shock structures are substantially affected by angle of attack. The dominant frequency of the inlet buzz, however, does not change noticeably even in regards to a wide range of angle of attacks.

Physical Modeling for Enhancement of the Functionality of Construction Graphical Simulation System (건설 그래픽 시뮬레이션 시스템의 기능 개선을 위한 물리적 모델링)

  • Kim, Yeong-Hwan;Jung, Pyung-Ki;Seo, Jong-Won
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.1 s.29
    • /
    • pp.80-88
    • /
    • 2006
  • Construction graphical simulations usually do not reflect physical properties of construction equipment and material because there are restricted to the geometric model. The complete description of construction operations is difficult for graphical simulation without a physical modeling. The object of this research is to enhance the functionality of restricted simulation system to geometric model. And research is conducted to overcome the limitation of current construction graphical simulation system through the connection geometric model and physical model with the physical properties of construction equipment and material such as crane's cable oscillation. The motion equations for the oscillation of crane cable as a result of the trolley's movement and the boom's rotation were derived. The equations were solved through numerical analysis and the results were simulated visually. The realistic description with physical modeling of construction operations will contribute for ensuring preliminary against risks and improving constructability as well as the application of various fields.