• Title/Summary/Keyword: numerical optimization

Search Result 2,307, Processing Time 0.025 seconds

Optimal Rechlorination for the Regulation of Chlorine Residuals in Water Distribution Systems (배수관망의 잔류염소 평활화를 위한 최적 재염소 처리)

  • Yoon, Jae-Heung;Oh, Jung-Woo;Choi, Young-Song
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.90-98
    • /
    • 1998
  • The optimal rechlorination in water distribution systems was investigated by incorporating optimization techniques into a numerical water quality model. For a hypothetical system that consists of 10 junctions including a storage tank and 12 links, the bulk ($k_b$) and pipe-wall ($k_w$) decay-rate constants of chlorine residual are assumed to be 2.0 1/day and 1.5 m/day, respectively. It was also assumed that the lower and upper limits of chlorine residual in the network are 0.2 mg/L and 0.6 mg/L. When the chlorine source is only the storage tank (without rechlorination), the high levels of chlorine residual appear near the storage tank to maintain the chlorine residuals above the lower limit over the junctions. On the other hand, the chlorine residuals in the network are distribute within the desirable range (0.2 - 0.6 mg/L) after the optimal rechlorination through five injection sites including the storage tank. In case of a real water distribution system that comprises 28 junctions including a clear well and 27 links, the bulk and pipe-wall decay-rate constants are 0.3 1/day and 0.2 m/day, respectively. Before rechlorination, the required chlorine residual at the clearwell is 5.1 mg/L to keep the chlorine residuals above the minimum level (0.6 mg/L) over the junctions. By the optimal rechlorination at five injection sites, the chlorine residuals are distributed within a desirable range of 0.6 mg/L through 2.0 mg/L, which can avoid the excess of chlorine residuals near the clear well. Consequently, total chlirine doses are decreased by 81% in the hypothetical distribution network and 69 % in the real distribution network for satisfying the minimum chlorine residuals.

  • PDF

A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju (제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구)

  • Lee, Young-Mi;Yoo, Myoung-Suk;Choi, Hong-Seok;Kim, Yong-Jun;Seo, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Structural Damage Detection Method Using Sensitivity Matrices (민감도행렬을 사용한 구조물의 손상추정법)

  • 윤정방;김두기
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.117-126
    • /
    • 1996
  • Damage detection methods using structural tests can be divided into two methods, i.e., static and dynamic. The static methods which use the stiffness properties of the structure are simpler than the dynamic methods. However, static approaches are very sensitive to the displacement measurement noises and modeling errors. The dynamic methods also have limitations in acquiring the natural frequencies and mode shapes of the high frequencies. In this study, a method for the structural damage assessment using sensitivity matrices is developed, in which the drawbacks of the static and dynamic methods can be compensated. Based on the measurement data for the static displacements and dynamic modal properties, the damage locations and the degree of damage are determined using the presented sensitivity matrix method. The efficiency of the proposed method has been examined through numerical simulation studies on truss type structures.

  • PDF

Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data (정지기상위성자료를 이용한 중규모 바람장 산출 알고리즘 최적화)

  • Kim, Somyoung;Park, Jeong-Hyun;Ou, Mi-Lim;Cho, Heeje;Sohn, Eun-Ha
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Atmospheric motion vectors (AMVs) derived using infrared (IR) channel imagery of geostationary satellites have been utilized widely for real-time weather analysis and data assimilation into global numerical prediction model. As the horizontal resolution of sensors on-board satellites gets higher, it becomes possible to identify atmospheric motions induced by convective clouds ($meso-{\beta}$ and $meso-{\gamma}$ scales). The National Institute of Meteorological Research (NIMR) developed the high resolution visible (HRV) AMV algorithm to detect mesoscale atmospheric motions including ageostrophic flows. To retrieve atmospheric motions smaller than $meso-{\beta}$ scale effectively, the target size is reduced and the visible channel imagery of geostationary satellite with 1 km resolution is used. For the accurate AMVs, optimal conditions are decided by investigating sensitivity of algorithm to target selection and correction method of height assignment. The results show that the optimal conditions are target size of 32 km ${\times}$ 32 km, the grid interval as same as target size, and the optimal target selection method. The HRV AMVs derived with these conditions depict more effectively tropical cyclone OMAIS than IR AMVs and the mean speed of HRV AMVs in OMAIS is slightly faster than that of IR AMVs. Optimized mesoscale AMVs are derived for 6 months (Feb. 2010-Jun. 2010) and validated with radiosonde observations, which indicates NIMR's HRV AMV algorithm can retrieve successfully mesoscale atmospheric motions.

Optimal Design of a High-Agility Satellite with Composite Solar Panels

  • Kim, Yongha;Kim, Myungjun;Kim, Pyeunghwa;Kim, Hwiyeop;Park, Jungsun;Roh, Jin-Ho;Bae, Jaesung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.476-490
    • /
    • 2016
  • This paper defines mode shape function of a composite solar panel assumed as Kirchhoff-Love plate for considering a torsional mode of composite solar panel. It then goes on to define dynamic model of a high-agility satellite considering the flexibility of composite solar panel as well as stiffness of a solar panel's hinge using Lagrange's theorem, Ritz method and the mode shape function. Furthermore, this paper verifies the validity of dynamic model by comparing numerical results from the finite element analysis. In addition, this paper performs a dynamic response analysis of a rigid satellite which includes only natural modes for solar panel's hinges and a flexible satellite which includes not only natural modes of solar panel's hinges, but also structural modes of composite solar panels. According to the results, we confirm that the torsional mode of solar panel should be considered for the structural design of high-agility satellite. Finally, we performed optimization of high-agility satellite for minimizing mass with solar panel's area limit using the defined dynamic model. Consequently, we observed that the defined dynamic model for a high-agility satellite and result of the optimal design are very useful not only because of their optimal structural design but also because of the dynamic analysis of the satellite.

The Incremental Cost Matrix Procedure for Locating Repair Service Centers in Multinational Reverse Logistics

  • Chen, Hsin Min;Hsieh, Chih Kuang;Wu, Ming Cheng;Luo, Shin Wei
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.194-200
    • /
    • 2009
  • This study provides a heuristic algorithm to solve the locating problem of repair service centers (RSCs). To enhance the customer service level with more satisfaction and quicker responsiveness, the locating problem of RSCs has become one of the important issues in reverse supply chain management. This problem is formulated as a zero-one mixed integer programming in which an exiting distributor will be considered to be an un-capacitated repair service center for the objective of cost-minimizing. Since logistical costs are highly interrelated with the multinational location of distributors and RSCs, the fixed cost for setting a repair service center, variable cost, transportation cost, and exchange rates are considered in this study. Recognizing the selection of un-capacitated RSCs' locations is a combinatorial optimization problem and is a zero-one mixed integer programming with NP-hard complexity, we provide a heuristic algorithm named as incremental cost matrix procedure (ICMP) to simplify the solving procedure. By using the concise and structural cost matrix, ICMP can efficiently screen the potential location with cost advantage and effectively decide which distributor should be a RSC. Results obtained from the numerical experiments conducted in small scale problem have shown the fact that ICMP is an effective and efficient heuristic algorithm for solving the RSCs locating problem. In the future, using the extended ICMP to solve problems with larger industrial scale or problems with congestion effects caused by the variation of customer demand and the restriction of the RSC capacity is worth a further investigation.

Development of a Multiobjective Optimization Algorithm Using Data Distribution Characteristics (데이터 분포특성을 이용한 다목적함수 최적화 알고리즘 개발)

  • Hwang, In-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1793-1803
    • /
    • 2010
  • The weighting method and goal programming require weighting factors or target values to obtain a Pareto optimal solution. However, it is difficult to define these parameters, and a Pareto solution is not guaranteed when the choice of the parameters is incorrect. Recently, the Mahalanobis Taguchi System (MTS) has been introduced to minimize the Mahalanobis distance (MD). However, the MTS method cannot obtain a Pareto optimal solution. We propose a function called the skewed Mahalanobis distance (SMD) to obtain a Pareto optimal solution while retaining the advantages of the MD. The SMD is a new distance scale that multiplies the skewed value of a design point by the MD. The weighting factors are automatically reflected when the SMD is calculated. The SMD always gives a unique Pareto optimal solution. To verify the efficiency of the SMD, we present two numerical examples and show that the SMD can obtain a unique Pareto optimal solution without any additional information.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

A Numerical Study on the Impeller Meridional Curvature of High Pressure Multistage Pump (고압 다단 펌프의 임펠러 자오면 곡선에 대한 수치 해석적 연구)

  • Kim, Deok Su;Jean, Sang Gyu;Mamatov, Sanjar;Park, Warn Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.445-453
    • /
    • 2017
  • This paper presents the hydraulic design an impeller and radial diffuser of a high-pressure multistage pump for reverse osmosis. The flow distribution and hydraulic performance for the meridional design of the impeller were analyzed numerically. Optimization was conducted based on the response surface method by varying the hub and shroud meridional curvatures, while maintaining the impeller outlet diameter, outlet width, and eye diameter constant. The analysis results of the head and efficiency with the variation in the impeller meridional profile showed that angle of the front shroud near the impeller outlet (${\varepsilon}Ds$) had the highest effect on head increase, while the hub inlet length ($d_{1i}$) and shroud curvature (Rds) had the highest effect on efficiency. From the meridional profile variation, an approximately 0.5% increase in efficiency was observed compared with the base model (case 25).

The Optimization of Offset Printing Process for High Quality Color Reproduction(II);Platemaking and Presswork (고품질 색재현을 위한 오프셋인쇄 공정의 최적화에 관한 연구(II);제판과 인쇄공정을 중심으로)

  • Kim, Sung-Su;Kang, Sang-Hoon
    • Proceedings of the Korean Printing Society Conference
    • /
    • 2007.11a
    • /
    • pp.13-28
    • /
    • 2007
  • Producing printing plate is essential progress to do offset printing. In this Film-less period, the more PS plate becomes extinct, the more the age of the Plate-Making of Exposure declines the place to stand. To do offset printing, the CTP (Computer to Plate) is taking a place of PS plate that covers speed, quality and economical problems. The biggest advantage of using CTP is that laser directly goes to the plate, thus there are no dust from the Plate-Making of Exposure. It is also theoretically able to print 200lpi${\sim}$300lpi as well as print 1751pi, because it has over 2400dpi resolution. The high quality printing could be available inside of the country, if printing machine keeps the optimum condition in offset printing. The CTP has many advantages, however there is a difficulty for the operators to preserve the equipment. The actual circumstance is that they cannot make a decision about how many dots need to be generated, and also it is necessary to know how to establish the setup at RIP on CTP to make the optimum condition output. If offset printing machine keeps the optimum condition, it would be able to print up to high quality printing however it is hard to comment what is the optimum condition for the printing machine. Anyone could say easy subjectively that machine is in the optimum condition, however it is objectively hard to estimate by number. In this research GATF / Plate Test target used to analyze the image and to make numerical value of the optimum condition of the CTP. It also used GATF / The sheep fed test printing 5.0 to know the density of the color representation, dot gain and gray balance for the optimum condition of the print machine. The purpose of this research is to represent the ISO 12647-2 which is the international standard with domestic printing equipments.

  • PDF