• Title/Summary/Keyword: numerical errors

Search Result 873, Processing Time 0.024 seconds

Temperature analysis of a long-span suspension bridge based on a time-varying solar radiation model

  • Xia, Qi;Liu, Senlin;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.23-35
    • /
    • 2020
  • It is important to take into account the thermal behavior in assessing the structural condition of bridges. An effective method of studying the temperature effect of long-span bridges is numerical simulation based on the solar radiation models. This study aims to develop a time-varying solar radiation model which can consider the real-time weather changes, such as a cloud cover. A statistical analysis of the long-term monitoring data is first performed, especially on the temperature data between the south and north anchors of the bridge, to confirm that temperature difference can be used to describe real-time weather changes. Second, a defect in the traditional solar radiation model is detected in the temperature field simulation, whereby the value of the turbidity coefficient tu is subjective and cannot be used to describe the weather changes in real-time. Therefore, a new solar radiation model with modified turbidity coefficient γ is first established on the temperature difference between the south and north anchors. Third, the temperature data of several days are selected for model validation, with the results showing that the simulated temperature distribution is in good agreement with the measured temperature, while the calculated results by the traditional model had minor errors because the turbidity coefficient tu is uncertainty. In addition, the vertical and transverse temperature gradient of a typical cross-section and the temperature distribution of the tower are also studied.

Reduced Minimization Theory in Skew Beam Element (공간곡선보요소에서의 감차최소화 이론)

  • Moon, Won-joo;Kim, Yong-woo;Min, Oak-key;Lee, Kang-won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3792-3803
    • /
    • 1996
  • Since the skew beam element has two curvatures which are a curvature and a torsion, spatial behavior of curved beam which cannot be included in one plane can be anlayzed by emploting the skew beam element. The $C^{0}$-continuous skew beam element shows the stiffness locking phenomenon when full integration is employed. The locking phenomenpn is characterized by two typical phenomena ; one is the much smaller displacement thant the exact one and theother is the undelation phenomenon is stress distribution. In this paper, we examine how unmatched coefficient in the constrained energy brings about the locking by Reduced Minimization theory. We perform the numerical ones. These comparisons show that uniformly full integration(UFI), which employs full integration for the constrained energy, entails the locking phenomenon. But the use of uniformly reduced integration(URI) of selectively reduced integration(SRI), which employs reduced integration for constrained energy, does not produce the significant errors of displacements of the undulation phenomenon in stress distribution since they do not entails the locking, Additionally, the error due to the approximated parameters for describing the geometry of skew beam is examined.d.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

Seismic Response Prediction Method of Cabinet Structures in a Nuclear Power Plant Using Vibration Tests (진동시험을 이용한 원자력발전소 캐비닛 구조의 지진응답예측기법)

  • Koo, Ki-Young;Cui, Jintao;Cho, Sung-Gook;Kim, Doo-Kie
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.57-63
    • /
    • 2008
  • This paper presents a seismic response prediction method using vibration tests of cabinet-type electrical equipment installed in a nuclear power plant. The proposed method consists of three steps: 1) identification of earthquake-equivalent forces based on lumped-mass system idealization, 2) identification of a state-space-equation model relating input-output measurements obtained from the vibration tests, 3) seismic prediction using the identified earthquake-equivalent forces and the identified state-space-equation. The proposed method is advantageous compared to other methods based on FEM (finite element method) model update, since the proposed method is not influenced by FEM modeling errors. Through a series of numerical verifications on a frame model and 3-dimensional shell model, it was found that the proposed method could be used to accurately predict the seismic responses, even under considerable measurement noise conditions. Experimental validation is needed for further study.

Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.623-649
    • /
    • 2016
  • Most of the early studies on plates vibration are focused on two-dimensional theories, these theories reduce the dimensions of problems from three to two by introducing some assumptions in mathematical modeling leading to simpler expressions and derivation of solutions. However, these simplifications inherently bring errors and therefore may lead to unreliable results for relatively thick plates. The main objective of this research paper is to present 3-D elasticity solution for free vibration analysis of continuously graded carbon nanotube-reinforced (CGCNTR) rectangular plates resting on two-parameter elastic foundations. The volume fractions of oriented, straight single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. In this study, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented, straight carbon nanotubes (CNTs). The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The formulations are based on the three-dimensional elasticity theory. A semi-analytical approach composed of differential quadrature method (DQM) and series solution is adopted to solve the equations of motion. The fast rate of convergence of the method is demonstrated and comparison studies are carried out to establish its very high accuracy and versatility. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and results reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. The novelty of the present work is to exploit Eshelby-Mori-Tanaka approach in order to reveal the impacts of the volume fractions of oriented CNTs, different CNTs distributions, various coefficients of foundation and different combinations of free, simply supported and clamped boundary conditions on the vibrational characteristics of CGCNTR rectangular plates. The new results can be used as benchmark solutions for future researches.

The Study of NHPP Software Reliability Model from the Perspective of Learning Effects (학습 효과 기법을 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • In this study, software products developed in the course of testing, software managers in the process of testing software test and test tools for effective learning effects perspective has been studied using the NHPP software. The Weibull distribution applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than automatic error that is generally efficient model could be confirmed. This paper, a numerical example of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R_{sq}$.

Numerical Study of the Averaging BDFT(bidirectional flow tube) Flow Meter on the Applicability in the Fouling Condition (수치해석을 이용한 평균 양방향 유동 튜브 유량계의 파울링 환경 적용성 연구)

  • Park, JongPil;Jeong, JiHwan;Kang, KyongHo;Baek, WonPil;Yun, ByongJo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • Most of the nuclear power plants(NPPs) adopts pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter by fouling as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT, which has developed by Yun et al., has a potentiality to minimize this problem thanks to its inherent measurement principle. Therefore, it is expected that the averaging BDFT can replace the venturi meter for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a commercial CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option. The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs.

Evaluation of Discharge Current Employing Generalized Energy Method and Integral Ohm's Law Using Finite Element Method (유한요소법을 이용한 일반화된 에너지법과 옴의 적분법에 의한 방전 전류 계산)

  • Lee, Ho-Young;Kim, Hong-Joon;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.357-361
    • /
    • 2011
  • The terminal current in voltage driven systems is an essential role for characterizing the pattern of electric discharge such as corona, breakdown, etc. Until now, to evaluate this terminal current, Sato's equation has been widely used in areas of high voltage and plasma discharge. Basically Sato's equation was derived by using the energy balance equation and its final form described physical meaning explicitly. To give more general abilities in Sato's equation, we present a generalized approach by directly using the Poynting's theorem incorporating the finite element method. When the magnetic field effect or the time-dependent voltage source is considered, this generalized energy method can be easily applicable to those problems with any dielectric media such as gas, fluid, and solid. As an alternative approach, the integral Ohm's law resulting in small numerical errors has an ability to be applied to multi-port systems. To test the generalized energy method and integral Ohm's law, first, the results from two prosed methods were compared to those from Sato's approach and an analytic solution in parallel plane electrodes. After verification, the generalized method was applied to the tip-sphere electrodes for evaluating the terminal current with three carriers and the Fowler-Nordheim field emission condition. From these results, we concluded that the generalized energy method can be a consistent technique for evaluating the discharge current with various dielectric materials or large magnetic field.

Discrete-Time Analysis of Throughput and Response Time for LAP Derivative Protocols under Markovian Block-Error Pattern (마르코프 오류모델 하에서의 LAP 계열 프로토콜들의 전송성능과 반응시간에 대한 이산-시간 해석)

  • Cho, Young-Jong;Choi, Dug-Kyoo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.11
    • /
    • pp.2786-2800
    • /
    • 1997
  • In this paper, we investigate how well the channel memory (statistical dependence in the occurrence of transmission errors) can be used in the evaluation of widely used error control schemes. For this we assume a special case named as the simplest Markovian block-error pattern with two states, in which each block is classified into two classes of whether the block transmission is in error or not. We apply the derived pattern to the performance evaluation of the practical link-level procedures, LAPB/D/M with multi-reject options, and investigate both throughput and user-perceived response time behaviors on the discrete-time domain to determine how much the performance of error recovery action is improved under burst error condition. Through numerical examples, we show that the simplest Markovian block-error pattern tends to be superior in throughput and delay characteristics to the random error case. Also, instead of mean alone, we propose a new measure of the response time specified as mean plus two standard deviations 50 as to consider user-perceived worst cases, and show that it results in much greater sensitivity to parameter variations than does mean alone.

  • PDF

Study on Experimental and Theroretical performances for a Compact Metallic Heat Exchanger for Fuel Cell Systems (연료전지용 소형 금속 열교환기의 성능에 대한 실험 및 이론적 연구)

  • Yoon, Young-Hwan;Paeng, Jin-Gi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.9-18
    • /
    • 2011
  • This study assessed the performance of a compact heat exchanger with staggered tube banks for recuperation of high temperature exhaust thermal energy for SOFC fuel cell system. The compact heat exchanger in this study is two pass system which consists of $315{\times}202.5{\times}48.5mm^3$ and 132 tubes of $6.0mm{\Phi}$ for each heat exchanger. From experiments of the 2 pass heat exchanger system, air temperature was increased from $60{\sim}85^{\circ}C$ to $402{\sim}482^{\circ}C$ while gas temperature was decreased from $600^{\circ}C$ to $305{\sim}402^{\circ}C$ according to mass flow rates of 3.9~7.8 g/s. The experimental heat transfer rates of the heat exchanger were compared with CFD numerical solutions with the conventional ${\xi}-NTU$ method. From the comparisons, the following conclusions were obtained. For the heat exchanger system, the relative errors of heat transfer rate by CFD solution were from 7.1 to 27%, and those by ${\xi}-NTU$ method were from 0.6% to 21% compared with experimental data. From the comparisons, it can be said that both of CFD and ${\xi}-NTU$ method almost simulated to experimental data except specific conditions. Pressure drops through air tubes and gas passages were calculated with both of the CFD computation and head loss equations. The differences between them were from 14 to 22%.