DOI QR코드

DOI QR Code

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation

대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석

  • Park, Young Min (Korea Aerospace Research Institute, Aerodynamics Research Team) ;
  • Lee, Chang Ho (Korea Aerospace Research Institute, Aerodynamics Research Team) ;
  • Lee, Yung Gyo (Korea Aerospace Research Institute, Aerodynamics Research Team)
  • 박영민 (한국항공우주연구원 공력성능연구팀) ;
  • 이창호 (한국항공우주연구원 공력성능연구팀) ;
  • 이융교 (한국항공우주연구원 공력성능연구팀)
  • Received : 2017.09.07
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

본 논문에서는 멀티콥터 대기자료센서의 최적의 장착위치 선정을 위한 멀티콥터 주변 유동장 해석을 과정을 기술하였다. 유동해석을 위해서는 상용유동해석 프로그램인 STAR-CCM+를 사용하였으며 다면체기반의 격자시스템과 k-w SST 난류 모델링을 사용하였다. 회전하는 4개의 프로펠러의 상대운동을 모사하기 위해서는 비정렬격자 기반 중첩격자기법을 사용하였다. 해석과정에서는 정지비행, 전진비행, 상승 및 하강비행에 대하여 해석을 수행하였고 센서위치에 대하여 측정오차를 분석하였다. 장착위치 분석결과 센서의 위치가 회전면에서 프로펠러 지름 높이 이상에 위치하면 하강비행을 제외한 멀티콥터의 운용과정에서 1m/s 정도 이내의 속도오차를 보이므로 비교적 정확한 측정이 가능할 것으로 예측되었다.

Keywords

References

  1. Y. Lee, "Safe Operation Technology of a Small UAV to Handle Bad Weather," Proc. of 2017 Spring Conf. The Society for Aerospace System Engineering, 2017.
  2. J. Kim, and J. Lee, "Development of Complex Sensor and Imaging Systems for Small UAV On-board Real Time Weather Observations," Proc. of 2017 Spring Conf. The Society for Aerospace System Engineering, 2017.
  3. C. Russell, J. Jung, G. Willink, and B. Glasner, "Wind Tunnel and Hover Performance Test Results for Multicopter UAS vehicles," Proc. of 72th American Helicopter Society Annual Forum, 2016.
  4. J. Hwang, M Jung, and O. Kwon, "Numerical Study of Aerodynamic Performance of a Multicopter Unmanned-Aerial-Vehicle Configuration," Journal of Aircraft, vol. 52, no. 3, pp. 839-846, May. 2015. https://doi.org/10.2514/1.C032828
  5. S. Yoon, W. Chan, and T. Pulliam, "Computations of Torque-Balanced Coaxial Rotor Flows," Proc. of 52th AIAA SciTech Forum, 2017.
  6. S. Thibault, D. Holman, G. Trapan, and S. Garcia, "CFD Simulation of a Quad-Rotor UAV with Rotors in Motion Explicitly Modeled Using an LBM Approach with Adaptive Refinement," Proc. of 52th AIAA SciTech Forum, 2017.
  7. Y. Park, Y. Lee, and C. Lee, "Near-field Flow Analysis of a Multicopter for Wind-speed and Wind-direction Sensor," Proc. of 9th National Congress of Fluid Engineering, 2016.
  8. Y. Park, J. Choi, and Y. Lee, "Numerical Analysis of the Flow Field Around Multicopter," Proc. of KSAS Spring Conference, 2010.
  9. http://www.dji.com/matrice100/info
  10. S. Wie, H. Kang, T. Kim, Y. Kee, and J. Song, "High-efficiency Propeller Development for Multicopter Type UAV," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 45, no. 7, pp. 581-593, July. 2017. https://doi.org/10.5139/JKSAS.2017.45.7.581