• Title/Summary/Keyword: numerical comparison problems

Search Result 221, Processing Time 0.031 seconds

NUMERICAL TREATMENT OF NON-MONOTONIC BLOW-PROBLEMS BASED ON SOME NON-LOCAL TRANSFORMATIONS

  • BASEM S. ATTILI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.321-331
    • /
    • 2024
  • We consider the numerical treatment of blow-up problems having non-monotonic singular solutions that tend to infinity at some point in the domain. The use of standard numerical methods for solving problems with blow-up solutions can lead to significant errors. The reason being that solutions of such problems have singularities whose positions are unknown in advance. To be able to integrate such non-monotonic blow-up problems, we describe and use a method of non-local transformations. To show the efficiency of the method, we present a comparison of exact and numerical solutions in addition to some comparison with the work of other authors.

A Survey on the Proportional Reasoning Ability of Fifth, Sixth, and Seventh Graders (5, 6, 7학년 학생들의 비례추론 능력 실태 조사)

  • Ahn, Suk-Hyun;Pang, Jeong-Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.18 no.1
    • /
    • pp.103-121
    • /
    • 2008
  • The primary purpose of this study was to gather knowledge about $5^{th},\;6^{th},\;and\;7^{th}$ graders' proportional reasoning ability by investigating their reactions and use of strategies when encounting proportional or nonproportional problems, and then to raise issues concerning instructional methods related to proportion. A descriptive study through pencil-and-paper tests was conducted. The tests consisted of 12 questions, which included 8 proportional questions and 4 nonproportional questions. The following conclusions were drawn from the results obtained in this study. First, for a deeper understanding of the ratio, textbooks should treat numerical comparison problems and qualitative prediction and comparison problems together with missing-value problems. Second, when solving missing-value problems, students correctly answered direct-proportion questions but failed to correctly answer inverse-proportion questions. This result highlights the need for a more intensive curriculum to handle inverse-proportion. In particular, students need to experience inverse-relationships more often. Third, qualitative reasoning tends to be a more general norm than quantitative reasoning. Moreover, the former could be the cornerstone of proportional reasoning, and for this reason, qualitative reasoning should be emphasized before proportional reasoning. Forth, when dealing with nonproportional problems about 34% of students made proportional errors because they focused on numerical structure instead of comprehending the overall relationship. In order to overcome such errors, qualitative reasoning should be emphasized. Before solving proportional problems, students must be enriched by experiences that include dealing with direct and inverse proportion problems as well as nonproportional situational problems. This will result in the ability to accurately recognize a proportional situation.

  • PDF

A Study on the Treatment of Open Boundary in the Two-Dimensional Free-Surface Wave Problems

  • Kim, Yong-Hwan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.63-78
    • /
    • 1994
  • This paper deals with the treatment of the open boundary in two-dimensional free-surface wave problems. Two numerical schemes are investigated for the implementation of the open boundary condition. One is to add the artificial damping term to the dynamic free-surface boundary condition, in which the determination of suitable damping coefficient and the damping zone is the most important. The other is a modified Orlanski's method, which is known to be very useful for the uni-directional waves. Using these two schemes, numerical tests have been conducted for a few typical free-surface wave problems. To obtain the numerical solution of the free-surface boundary value problem, the fundamental source-distribution method is used and the fully nonlinear free-surface boundary conditions are applied. The computed results are presented in comparison with those of others for the proof of practicality of these two schemes.

  • PDF

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

IMPROVING COMPARISON RESULTS ON PRECONDITIONED GENERALIZED ACCELERATED OVERRELAXATION METHODS

  • Wang, Guangbin;Sun, Deyu
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.193-201
    • /
    • 2015
  • In this paper, we present preconditioned generalized accelerated overrelaxation (GAOR) methods for solving weighted linear least square problems. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give a numerical example to confirm our theoretical results.

PRECONDITIONED SSOR METHODS FOR THE LINEAR COMPLEMENTARITY PROBLEM WITH M-MATRIX

  • Zhang, Dan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.657-670
    • /
    • 2019
  • In this paper, we consider the preconditioned iterative methods for solving linear complementarity problem associated with an M-matrix. Based on the generalized Gunawardena's preconditioner, two preconditioned SSOR methods for solving the linear complementarity problem are proposed. The convergence of the proposed methods are analyzed, and the comparison results are derived. The comparison results showed that preconditioned SSOR methods accelerate the convergent rate of the original SSOR method. Numerical examples are used to illustrate the theoretical results.

Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.67-98
    • /
    • 2015
  • Numerical prediction of dynamic behavior of fully coupled saturated porous media is of great importance in many engineering problems. Specifically, static and dynamic response of soils - porous media with pores filled with fluid, such as air, water, etc. - can only be modeled properly using fully coupled approaches. Modeling and simulation of static and dynamic behavior of soils require significant Verification and Validation (V&V) procedures in order to build credibility and increase confidence in numerical results. By definition, Verification is essentially a mathematics issue and it provides evidence that the model is solved correctly, while Validation, being a physics issue, provides evidence that the right model is solved. This paper focuses on Verification procedure for fully coupled modeling and simulation of porous media. Therefore, a complete Solution Verification suite has been developed consisting of analytical solutions for both static and dynamic problems of porous media, in time domain. Verification for fully coupled modeling and simulation of porous media has been performed through comparison of the numerical solutions with the analytical ones. Modeling and simulation is based on the so called, u-p-U formulation. Of particular interest are numerical dispersion effects which determine the level of numerical accuracy. These effects are investigated in detail, in an effort to suggest a compromise between numerical error and computational cost.

Computational fluid dynamics simulation of pedestrian wind in urban area with the effects of tree

  • Chang, Cheng-Hsin
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.147-158
    • /
    • 2006
  • The purpose of this paper is to find a more accurate method to evaluate pedestrian wind by computational fluid dynamics approach. Previous computational fluid dynamics studies of wind environmental problems were mostly performed by simplified models, which only use simple geometric shapes, such as cubes and cylinders, to represent buildings and structures. However, to have more accurate and complete evaluation results, various shapes of blocking objects, such as trees, should also be taken into consideration. The aerodynamic effects of these various shapes of objects can decrease wind velocity and increase turbulence intensity. Previous studies simply omitted the errors generated from these various shapes of blocking objects. Adding real geometrical trees to the numerical models makes the calculating domain of CFD very complicated due to geometry generation and grid meshing problems. In this case the function of Porous Media Condition can solve the problem by adding trees into numerical models without increasing the mesh grids. The comparison results between numerical and wind tunnel model are close if the parameters of porous media condition are well adjusted.

Influence of modeling fineness of SEA in shipboard noise predictions (선박소음해석에 있어서 SEA 모델링 정밀도의 영향)

  • Kang, Hyun-Ju;Kim, Jae-Seung;Kim, Hyun-Sil;Kim, Bong-Ki;Kim, Sang-Ryul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.355-358
    • /
    • 2008
  • This study deals with a substantial problems with SEA modeling methods in shipboard noise predictions. As a first problems with respect to modeling, fineness of model that represents a real structure is numerically investigated by comparison among 3 models, Fine, Coarse and Simplified models. Comparison reveals that Fine model shows the lowest noise level among them since this model involve more energy transfer paths than the other models. Influence of in-plane wave is also examined by numerical comparison. It is clear that inclusion of in-plane wave affects the high frequency and the cabin far from a source.

  • PDF

Performance Comparison of Symbolic Manipulation Programs using a Validation Method for Numerical Solution (수치해 검증방법을 이용한 기호 연산 프로그램 성능 비교)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.2
    • /
    • pp.69-74
    • /
    • 2015
  • We propose a rigorous and practical methodology to evaluate the performance of symbolic manipulation program such as Mathematica, Maple, and Maxima. First, we demonstrate an inverse method to construct the benchmark problems of an initial value problems. The benchmark problems associated with the discrete version of the Chebyshev polynomials provide a rigorous and objective measure to evaluate the performance of symbolic manipulation programs. We compare three symbolic manipulation programs, which are Mathematica, Maple and Maxima, using this methodology. The computation time, the used memory and the perturbation terms are chosen for comparison parameters.