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IMPROVING COMPARISON RESULTS ON
PRECONDITIONED GENERALIZED ACCELERATED
OVERRELAXATION METHODS'
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ABSTRACT. In this paper, we present preconditioned generalized accel-
erated overrelaxation (GAOR) methods for solving weighted linear least
square problems. We compare the spectral radii of the iteration matrices
of the preconditioned and the original methods. The comparison results
show that the preconditioned GAOR methods converge faster than the
GAOR method whenever the GAOR method is convergent. Finally, we
give a numerical example to confirm our theoretical results.
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1. Introduction

Consider the weighted linear least squares problem

min (Az — b)T W= (Az — b), (1.1)
reR™
where W is the variance-covariance matrix. The problem has many scientific
applications. A typical source is parameter estimation in mathematical model-
ing. This problem has been discussed in many books and articles. In order to
solve it, one has to solve a nonsingular linear system as

Hy = f,
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is an invertible matrix with
B = (bij)pxps C = (Cij)axqy D = (dij)gxp, P+q=n.
In order to solve the linear system using the GAOR method, we split H as
n=1-(50)-(0 )
Then, for w # 0, one GAOR method can be defined by

y(k+1) — any(k) +wg, k=0,1,2,--,

where
b= () Hamarsewon( S 8) (2 )
N ( W(f“l:lc)dl);—+ ;T%B (1—w)l+ L:;g +wrDE )

is the iteration matrix and

I 0
g<—rD 1>f'

In order to decrease the spectral radius of the iteration matrix, an effective
method is to precondition the linear system (1.1), namely,

PH(I;)? e )
then the preconditioned GAOR (PGAOR) method can be defined by
y(k+1) — L:,wy(k) +wg*, k=0,1,2,--,
where

I (1—-w)I+wB* —wE™*
me T\ w(l=r)D* —wrD*B* (1 - w)l +wC*+wrD*E* ]’

._( T 0
g _(—TD* I)Pf'

This paper is organized as follows. In Section 2, we propose three precon-
ditioners and give the comparison theorems between the preconditioned and
original methods. These results show that the preconditioned GAOR methods
converge faster than the GAOR method whenever the GAOR method is conver-
gent. In Section 3, we give one example to confirm our theoretical results.
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2. Comparison results

In paper [5], the preconditioners introduced by Zhou et al. are of the form

_(I+S; 0
PZ"( 0 I)'

In paper [3], the following preconditioned linear system was considered
Hy=f, (2.1)
where H = (I + S)H and f = (I + S)f with
= S 0
=(00)

S is a p X p matrix with 1 < p < n. And S was taken as follows:

0 by --- 0 0
b21 0 . 0 0
S, = : : _ : 7
0 0 0 bp—1,p
0 o0 bp p—1 0
0 0 0 0 0 by O 0
bar 0 0 0 0 0 b 0
SQ = 0 b32 0 0 s 53 = : : . :
ST : : 00 0 - byrp
0 0 - byp1 O 0 0 o .- 0
The preconditioned GAOR methods for solving (2.1) are
yB ) = L0 g™ 4 wg, k=0,1,2,--, (2.2)

where
i - < (1 —-w)l +w[B-S;(I —B)] —w(l + S;)FE >
=\ w(lr—1)D—wrDB-S;(I-B)] (1-w)l+4+wC+wrD(I+S;)E

are iteration matrices for ¢ = 1,2, 3.
In paper [4], the preconditioners introduced by Yun are of the form

a_< 0 I+w)'

In this paper, we will consider new preconditioners P;*

Pz( 0 I‘i‘V;)’ 7’*17273
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where S; are defined as above and

0 C12 0 0
C21 0 0 0
Vl = )
0 0 0 Cp—1,p
0 0 Cpp—1 0
0 0 0 0 0 c12 O 0
co1 0 0 0 0 0 23 0
‘/2 = 0 C32 0 0 s Vg = .
: : . : : 00 0 Cp—1,p
0 0 - ¢ppa O 0 0 0
Then
H P'H
_( I—-[B—-S;(I-B) (I+S,)E
- (I+V)D I1-[C-V;(I-0C)

- ( —(I+OVI)D 0 > : ( B [C_—(IVj(fi—)EC)] >

The preconditioned GAOR methods for solving P*Hy = P} f are defined as
follows

y ) = Li,(j)y(’“) +wd, k=0,1,2,--,

where for i = 1,2, 3,

(1 =w)I 4 w[B—S;(I - B)] —w(l + S;)E
Ly = w(r —1)(I +V;)D (1—w) +wlC—-Vi(I-C)] |,
—wr(I+V;)D[B = Si(I - B)]  +wr(I+V;)D(I + S;)E

— I 0 f
9=\ —rg+v)p 1 )7
Lemma 2.1 ([1, 2]). Let A € R™*™ be nonnegative and irreducible. Then

(a): A has a positive real eigenvalue equal to its spectral radius p(A).

(b): for p(A) ,there corresponds an eigenvector x > 0.

(c): if0# ax < Ax < Bx,ax # Az, Az # Bz for some nonnegative vector
x, then a < p(A) < B and x is a positive vector.

Theorem 2.1. Let L,,,, L *(1) be the iteration matrices associated of the GAOR
and preconditioned GAOR methods, respectively. If the matriz H is irreducible
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with D < 0, E<0, B>0, C> 0, bi,i-{-l > 0, b7;+17z' > 0, Cii+1 > 0, Cit1,i > 0
for somei € {1,2,--- ,p—1}, 0 <w <1, 0<r <1, then either

p(L:,(wl)) <p(Lrw) <1 (2.3)

or
p(Li3) > p(Lyw) > 1. (2.4)

Proof. Since0 <w <1, 0<r<1, D0, E0, B>0, C >0, it is easy
to prove that both L:fful,) and L, ., are irreducible and non-negative. By Lemma
2.1, there is a positive vector = such thatL, ,x = Az, where A = p(L, ). Then

fomanwn( 82 )ema(y )-

LBz — 2z

W

—wA4r=A)ViD —wVi(I -C)
) (h e (LY, e )

? )1( ( —wS: (I — B) —wS E )x
0
I 0

(v 1) (3 025" aliue )
J

:(T(I—i—IVl)D ?)1(% \2)((/\_01)] ()\_Ol)l)x

:(A—1)< _,«([41_\/1)1) ?)( %1 ‘(/)1 )m

Since bi,i+l > 0, bi+1,i >0, Ciji+1 > 0, Cit+1,i > 0 then S; >0, V4 > 0 and

! %Yo S0 o
—r(I+V))D T Lo n '
If A < 1, then L:,(i)x — Az < 0. By Lemma 2.1, we get p(L:,(‘i)) < p(Lrww) <1
If A > 1, then LiYz — Az > 0. By Lemma 2.1, we get p(Li%)) > p(Lrwo) > 1. O

By the analogous proof of Theorem 2.1, we can prove the following two the-
orems.

Theorem 2.2. Let L,,,, L;E,(f,) be the iteration matrices associated of the GAOR
and preconditioned GAOR methods, respectively. If the matriz H is irreducible
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with D < 0, E<0, B>0, C> 0, bi,i-{-l > 0, b7;+17z' > 0, Cii+1 > 0, Cit1,i > 0
for somei € {1,2,--- ,p—1}, 0 <w <1, 0<r <1, then either

p(Li2) < p(Lyw) <1 or p(Li2) > p(Lyw) > 1.
Theorem 2.3. Let L, ,, L*(g) be the iteration matrices associated of the GAOR
and preconditioned GAOR methods, respectively. If the matriz H is irreducible

with D < 0, E<0, B>0, C> 0, bi7i+1 >0, bi—i—l,i > 0, Cii+1 > 0, Cit1,5 > 0
for somei € {1,2,--- ,p—1}, 0<w <1, 0<r <1, then either

p(L:’(g)) <p(Lyw) <1 or p(L:SE)) > p(Lrw) > 1.
Theorem 2.4. Under the assumptions of Theorem 2.1, then either
p(LiD) < p(Ly3) < 1,if p(Lyw) <1

or
p(LyD) > p(Li D) > Lif p(Lrw) > 1.

Proof. By Lemma 2.1, there is a positive vector x ,such that
Ly,x =M (2.5)
where A = p(L,,,). Then
La - 1;@a
= (L) — z) - (L*<2> - Ax)

S1 0 .
I—|—V1D I 0 W

— (A~ 1><_r(ziv2)D 1><% Vo'z)x

— S, 0
( (I+ Vs Dsz—r(uVl)Dsl Vi—Va >l’

1) S1— 55 0 .
TD(SQ - 51) + T‘/QD(SQ — Sl) =+ T(VQ - Vl)DSl Vi—Vs

Under the conditions of Theorem 2.1, we know that

D <0,5 >85>0V >V, >0.

=(\—

Thus
T‘D(SQ — Sl) + T‘/QD(SQ — 51) + 7"(‘/2 — Vl)Dsl > 0, S1— S > 0,1 — V5 > 0.

Then
(1) If A < 1, then Lr(w)x — L*(2):z: < 0. By Lemma 2.1, we get

p(Ly3)) < p(Lr2)) < 1.
(2) If A > 1, then LiV2 — Li¥2 > 0. By Lemma 2.1, we get
p(Ly3) > p(Lr3)) > 1.
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O

By the analogous proof of Theorem 2.4, we can prove the following one the-
orem.

Theorem 2.5. Under the assumptions of Theorem 2.1, then either
p(Li3) < p(Lr8)) < 1if p(Lrw) <1

or
p(LyD) > p(Li2) > 1,if p(Lrw) > 1.

Theorem 2.6. Under the assumptions of Theorem 2.1, then either
p(LiD) < p(LE)) < Lif p(L{) <1

or
p(Ly) > p(LY)) > Lif p(Li)) > 1.

Proof. By Lemma 2.1, there is a positive vector x ,such that

Lglu)):r = Az (2.6)
where A = p(LSﬂlo)J) Then

{(17w)17(w7r)(_0D S)er(BfSléIfB) f(IESl)E)}x
_ (I o)x

rD I
LMz —

= ( r(I—I—IV1)D ; )_1{(1‘”)”(“”( —(I+0V1)D 0 >}"”

*A(r(I+IV1)D (f))x
N ( r(I+IV1)D 7 ( (—w+ O—ATWID —“VI(O]‘C) )m
0

SR
i 1) (8 8 ) (g my trse
1) (o)l

A—1I 0)1)"”

B I
_(r(l-i-V1)D 0 A—1

:(/\71)(8 &)x

By assumptions, V; > 0. Hence we obtain the following results.
If A < 1, then LiYz — Az < 0. By Lemma 2.1, we get p(Li})) < p(L{) < 1.
If A> 1, then L)z — Az > 0. By Lemma 2.1, we get p(Li)) > p(L) > 1. (]

’

By the analogous proof of Theorem 2.6, we can prove the following two the-
orems.
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Theorem 2.7. Let L&?Z,, L:fg) be the iteration matrices associated of the GAOR
and preconditioned GAOR methods, respectively. If the matriz H is irreducible
with D <0, E<0, B>0, C > 0, bi’iJrl >0, bi+1,i > 0, Cii+1 > 0, Cit1,i > 0
for somei€{1,2,--- ,p—1}, 0 <w <1, 0<r <1, then either

p(Ly2) < p(L2)) <1 or p(Lr2) > p(Li2) > 1.

Theorem 2.8. Let LSU)J, L:,(U?j) be the iteration matrices associated of the GAOR
and preconditioned GAOR methods, respectively. If the matriz H is irreducible
with D < 0, E<0, B>0, C > 0, bi7i+1 >0, bi—i—l,i > 0, Cijit+1 > 0, Cit1,i > 0
for somei € {1,2,--- ,p—1}, 0<w <1, 0<r <1, then either

p(LiD) < p(LE) <1 or p(Li®) > p(LE)) > 1.

)

3. Numerical example

Now, we present an example to illustrate our theoretical results.

Example 3.1. The coefficient matrix H in (1.1) is given by

(I-B, U
H< c 1—B2>

(i) (n—p) x (n—p)> C = (Ci) (n—p)xp» U = (Wij)px (n—p)

where By = (bij)pxp, B2 =
1= ]_7 2, RNV

Withb“:m,

bij =55 — g0y (<dr =12 p=1 j=2,p

bij =35 — x5 >0 1=2,p, §=1,2,-,p—1

b;i:m, i=1,2,---,n—p

bij = 35— o5 1< i=12- m—p—1, j=2,--,n—p

by = 35 — wxG e > =2 n—p, j=12- n—p—1
1

e _ 1l ;= — i =
C’Lj - 30><(p+i*j+1)+p+i 30° 1= 1727 7n p7 j - 1727 7p
1

i:1725"'ap5 .7:17277’”‘_29

=1 1
~ 30x(ptj)+i  30°

Table 1 displays the spectral radii of the corresponding iteration matrices
with some randomly chosen parameters 7, w,p. From Table 1, we see that these
results accord with Theorems 2.1-2.8.

Remark: In this paper, we propose three preconditioners and give the compar-
ison theorems between the preconditioned and original methods. These results
show that the preconditioned GAOR methods converge faster than the GAOR
method whenever the GAOR method is convergent.
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Table 1. The spectral radii of the GAOR and preconditioned GAOR iteration matrices

n w r P p PI P P3 p1 p2 p3

5 0.95 0.7 3 0.1450 0.1272 0.1356 0.1338 0.1330 0.1384 0.1376
10 0.9 0.85 5 0.2782 0.2509 0.2665 0.2620 0.2664 0.2726 0.2711
15 095 0.8 5 0.3834 0.3553 0.3720 0.3670 0.3777 0.3808 0.3800
20 075 065 10 0.6350 0.6172 0.6278 0.6248 0.6271 0.6317 0.6303
25 0.7 0.55 8 0.7872 0.7764 0.7829 0.7815 0.7846 0.7861 0.7856
30 0.65 0.55 16 0.9145 0.9099 0.9126 0.9126 0.9122 0.9136 0.9131
40 06 0.5 10 1.1426 1.1505 1.1458 1.1489 1.1442 1.1433 1.1436
50 0.6 0.5 10 1.3668 1.3877 1.3753 1.3815 1.3705 1.3683 1.3690
500 0.05 0.1 100 1.9831 2.0564 2.0168 2.0283 2.0028 1.9915 1.9944
1000 0.05 0.05 100 2.8492 2.9810 2.9115 29256 2.8710 2.8584 2.8617
2000 0.05 0.05 100 4.7927 5.0690 4.9252 4.9522 4.8298 4.8085 4.8140

* *(1 * *(2 * *(3 1 2

Here p = p(Lr,w), p} = p(L:D)), p3 = p(Lr,(w))v p3 = p(Li3), p1 = p(L), po = p(Lﬁ,l),
3

ps = p(LE)).
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