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IMPROVING COMPARISON RESULTS ON

PRECONDITIONED GENERALIZED ACCELERATED

OVERRELAXATION METHODS†

GUANGBIN WANG∗ AND DEYU SUN

Abstract. In this paper, we present preconditioned generalized accel-
erated overrelaxation (GAOR) methods for solving weighted linear least
square problems. We compare the spectral radii of the iteration matrices
of the preconditioned and the original methods. The comparison results

show that the preconditioned GAOR methods converge faster than the
GAOR method whenever the GAOR method is convergent. Finally, we
give a numerical example to confirm our theoretical results.
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1. Introduction

Consider the weighted linear least squares problem

min
x∈Rn

(Ax− b)TW−1(Ax− b), (1.1)

where W is the variance-covariance matrix. The problem has many scientific
applications. A typical source is parameter estimation in mathematical model-
ing. This problem has been discussed in many books and articles. In order to
solve it, one has to solve a nonsingular linear system as

Hy = f,

where

H =

(
I −B E
D I − C

)
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is an invertible matrix with

B = (bij)p×p, C = (cij)q×q, D = (dij)q×p, p+ q = n.

In order to solve the linear system using the GAOR method, we split H as

H = I −
(

0 0
−D 0

)
−
(

B −E
0 C

)
.

Then, for ω ̸= 0, one GAOR method can be defined by

y(k+1) = Lr,ωy
(k) + ωg, k = 0, 1, 2, · · · ,

where

Lr,ω =

(
I 0
rD I

)−1 {
(1− ω)I + (ω − r)

(
0 0

−D 0

)
+ ω

(
B −E
0 C

)}
=

(
(1− ω)I + ωB −ωE

ω(r − 1)D − ωrDB (1− ω)I + ωC + ωrDE

)
is the iteration matrix and

g =

(
I 0

−rD I

)
f.

In order to decrease the spectral radius of the iteration matrix, an effective
method is to precondition the linear system (1.1), namely,

PH =

(
I −B∗ E∗

D∗ I − C∗

)
,

then the preconditioned GAOR (PGAOR) method can be defined by

y(k+1) = L∗
r,ωy

(k) + ωg∗, k = 0, 1, 2, · · · ,

where

L∗
r,ω =

(
(1− ω)I + ωB∗ −ωE∗

ω(1− r)D∗ − ωrD∗B∗ (1− ω)I + ωC∗ + ωrD∗E∗

)
,

g∗ =

(
I 0

−rD∗ I

)
Pf.

This paper is organized as follows. In Section 2, we propose three precon-
ditioners and give the comparison theorems between the preconditioned and
original methods. These results show that the preconditioned GAOR methods
converge faster than the GAOR method whenever the GAOR method is conver-
gent. In Section 3, we give one example to confirm our theoretical results.
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2. Comparison results

In paper [5], the preconditioners introduced by Zhou et al. are of the form

Pi =

(
I + Si 0

0 I

)
.

In paper [3], the following preconditioned linear system was considered

H̃y = f̃ , (2.1)

where H̃ = (I + S̃)H and f̃ = (I + S̃)f with

S̃ =

(
S 0
0 0

)
,

S is a p× p matrix with 1 < p < n. And S was taken as follows:

S1 =



0 b12 · · · 0 0

b21 0
. . . 0 0

...
. . .

...
. . .

...

0 0
. . . 0 bp−1,p

0 0 · · · bp,p−1 0


,

S2 =



0 0 · · · 0 0

b21 0
. . . 0 0

0 b32 · · · 0 0
...

...
. . .

...
...

0 0 · · · bp,p−1 0

 , S3 =


0 b12 0 · · · 0
0 0 b23 · · · 0
...

...
...

. . .
...

0 0 0 · · · bp−1,p

0 0 0 · · · 0

 .

The preconditioned GAOR methods for solving (2.1) are

y(k+1) = L(i)
r,ωy

(k) + ωg̃, k = 0, 1, 2, · · · , (2.2)

where

Li
r,ω =

(
(1− ω)I + ω[B − Si(I −B)] −ω(I + Si)E

ω(r − 1)D − ωrD[B − Si(I −B)] (1− ω)I + ωC + ωrD(I + Si)E

)
are iteration matrices for i = 1, 2, 3.

In paper [4], the preconditioners introduced by Yun are of the form

P ∗
i =

(
I + Si 0

0 I + Vi

)
.

In this paper, we will consider new preconditioners P ∗
i

P ∗
i =

(
I + Si 0

0 I + Vi

)
, i = 1, 2, 3
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where Si are defined as above and

V1 =



0 c12 · · · 0 0

c21 0
. . . 0 0

...
. . .

...
. . .

...

0 0
. . . 0 cp−1,p

0 0 · · · cp,p−1 0


,

V2 =



0 0 · · · 0 0

c21 0
. . . 0 0

0 c32 · · · 0 0
...

...
. . .

...
...

0 0 · · · cp,p−1 0

 , V3 =


0 c12 0 · · · 0
0 0 c23 · · · 0
...

...
...

. . .
...

0 0 0 · · · cp−1,p

0 0 0 · · · 0

 .

Then

H̃∗
i = P ∗

i H

=

(
I − [B − Si(I −B)] (I + Si)E

(I + VI)D I − [C − Vi(I − C)]

)
= I −

(
0 0

−(I + VI)D 0

)
−
(

[B − Si(I −B)] −(I + Si)E
0 [C − Vi(I − C)]

)
.

The preconditioned GAOR methods for solving P ∗
i Hy = P ∗

i f are defined as
follows

y(k+1) = L∗(i)
r,ω y(k) + ωg̃∗, k = 0, 1, 2, · · · ,

where for i = 1, 2, 3,

L∗(i)
r,ω =

 (1− ω)I + ω[B − Si(I −B)] −ω(I + Si)E
ω(r − 1)(I + Vi)D (1− ω)I + ω[C − Vi(I − C)]

−ωr(I + Vi)D[B − Si(I −B)] +ωr(I + Vi)D(I + Si)E

 ,

g̃∗i =

(
I 0

−r(I + Vi)D I

)
f̃ .

Lemma 2.1 ([1, 2]). Let A ∈ Rn×n be nonnegative and irreducible.Then

(a): A has a positive real eigenvalue equal to its spectral radius ρ(A).
(b): for ρ(A) ,there corresponds an eigenvector x > 0.
(c): if 0 ̸= αx ≤ Ax ≤ βx, αx ̸= Ax,Ax ̸= βx for some nonnegative vector

x, then α < ρ(A) < β and x is a positive vector.

Theorem 2.1. Let Lr,ω, L
∗(1)
r,ω be the iteration matrices associated of the GAOR

and preconditioned GAOR methods, respectively. If the matrix H is irreducible



Preconditioned generalized accelerated overrelaxation methods 197

with D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0
for some i ∈ {1, 2, · · · , p− 1}, 0 < ω ≤ 1, 0 ≤ r < 1, then either

ρ(L∗(1)
r,ω ) < ρ(Lr,ω) < 1 (2.3)

or

ρ(L∗(1)
r,ω ) > ρ(Lr,ω) > 1. (2.4)

Proof. Since 0 < ω ≤ 1, 0 ≤ r < 1, D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, it is easy

to prove that both L
∗(1)
r,ω and Lr,ω are irreducible and non-negative. By Lemma

2.1, there is a positive vector x such thatLr,ωx = λx, where λ = ρ(Lr,ω). Then{
(1− ω)I − (ω − r)

(
0 0

−D 0

)
+ ω

(
B −E
0 C

)}
x = λ

(
I 0
rD I

)
x

L∗(1)
r,ω x− λx

=

(
I 0

r(I + V1)D I

)−1 {
(1− ω)I + (ω − r)

(
0 0

−(I + V1)D 0

)}
x

− λ

(
I 0

r(I + V1)D I

)
x

=

(
I 0

r(I + V1)D I

)−1 ( −ωS1(I −B) −ωS1E
(−ω + r − λr)V1D −ωV1(I − C)

)
x

=

(
I 0

r(I + V1)D I

)−1 (
S1 0
0 V1

)(
−ω(I −B) −ωE

(−ω + r − λr)D −ω(I − C)

)
x

=

(
I 0

r(I + V1)D I

)−1 (
S1 0
0 V1

){(
(λ− ω)I + ωB −ωE
−(ω − r)D (λ− ω)I + ωC

)
−λ

(
I 0
rD I

)}
x

=

(
I 0

r(I + V1)D I

)−1 (
S1 0
0 V1

)(
(λ− 1)I 0

0 (λ− 1)I

)
x

= (λ− 1)

(
I 0

−r(I + V1)D I

)(
S1 0
0 V1

)
x

Since bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0 then S1 > 0, V1 > 0 and(
I 0

−r(I + V1)D I

)
> 0,

(
S1 0
0 V1

)
> 0.

If λ < 1, then L
∗(1)
r,ω x− λx < 0. By Lemma 2.1, we get ρ(L

∗(1)
r,ω ) < ρ(Lr,ωω) < 1.

If λ > 1, then L
∗(1)
r,ω x− λx > 0. By Lemma 2.1, we get ρ(L

∗(1)
r,ω ) > ρ(Lr,ωω) > 1. �

By the analogous proof of Theorem 2.1, we can prove the following two the-
orems.

Theorem 2.2. Let Lr,ω, L
∗(2)
r,ω be the iteration matrices associated of the GAOR

and preconditioned GAOR methods, respectively. If the matrix H is irreducible



198 Guangbin Wang, Deyu Sun

with D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0
for some i ∈ {1, 2, · · · , p− 1}, 0 < ω ≤ 1, 0 ≤ r < 1, then either

ρ(L∗(2)
r,ω ) < ρ(Lr,ω) < 1 or ρ(L∗(2)

r,ω ) > ρ(Lr,ω) > 1.

Theorem 2.3. Let Lr,ω, L
∗(3)
r,ω be the iteration matrices associated of the GAOR

and preconditioned GAOR methods, respectively. If the matrix H is irreducible
with D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0
for some i ∈ {1, 2, · · · , p− 1}, 0 < ω ≤ 1, 0 ≤ r < 1, then either

ρ(L∗(3)
r,ω ) < ρ(Lr,ω) < 1 or ρ(L∗(3)

r,ω ) > ρ(Lr,ω) > 1.

Theorem 2.4. Under the assumptions of Theorem 2.1, then either

ρ(L∗(1)
r,ω ) < ρ(L∗(2)

r,ω ) < 1, if ρ(Lr,ω) < 1

or
ρ(L∗(1)

r,ω ) > ρ(L∗(2)
r,ω ) > 1, if ρ(Lr,ω) > 1.

Proof. By Lemma 2.1, there is a positive vector x ,such that

Lr,ωx = λx (2.5)

where λ = ρ(Lr,ω). Then

L∗(1)
r,ω x− L∗(2)

r,ω x

= (L∗(1)
r,ω − λx)− (L∗(2)

r,ω − λx)

= (λ− 1)

(
I 0

−r(I + V1)D I

)(
S1 0
0 V1

)
x

− (λ− 1)

(
I 0

−r(I + V2)D I

)(
S2 0
0 V2

)
x

= (λ− 1)

(
S1 − S2 0

r(I + V2)DS2 − r(I + V1)DS1 V1 − V2

)
x

= (λ− 1)

(
S1 − S2 0

rD(S2 − S1) + rV2D(S2 − S1) + r(V2 − V1)DS1 V1 − V2

)
x

Under the conditions of Theorem 2.1, we know that

D < 0, S1 > S2 > 0, V1 > V2 > 0.

Thus

rD(S2 − S1) + rV2D(S2 − S1) + r(V2 − V1)DS1 > 0, S1 − S2 > 0, V1 − V2 > 0.

Then
(1) If λ < 1, then L

∗(1)
r,ω x− L

∗(2)
r,ω x < 0. By Lemma 2.1, we get

ρ(L∗(1)
r,ω ) < ρ(L∗(2)

r,ω ) < 1.

(2) If λ > 1, then L
∗(1)
r,ω x− L

∗(2)
r,ω x > 0. By Lemma 2.1, we get

ρ(L∗(1)
r,ω ) > ρ(L∗(2)

r,ω ) > 1.
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�
By the analogous proof of Theorem 2.4, we can prove the following one the-

orem.

Theorem 2.5. Under the assumptions of Theorem 2.1, then either

ρ(L∗(1)
r,ω ) < ρ(L∗(3)

r,ω ) < 1, if ρ(Lr,ω) < 1

or
ρ(L∗(1)

r,ω ) > ρ(L∗(3)
r,ω ) > 1, if ρ(Lr,ω) > 1.

Theorem 2.6. Under the assumptions of Theorem 2.1, then either

ρ(L∗(1)
r,ω ) < ρ(L(1)

r,ω) < 1, if ρ(L(1)
r,ω) < 1

or
ρ(L∗(1)

r,ω ) > ρ(L(1)
r,ω) > 1, if ρ(L(1)

r,ω) > 1.

Proof. By Lemma 2.1, there is a positive vector x ,such that

L(1)
r,ωx = λx (2.6)

where λ = ρ(L
(1)
r,ω). Then{

(1− ω)I − (ω − r)

(
0 0

−D 0

)
+ ω

(
B − S1(I −B) −(I + S1)E

0 C

)}
x

= λ

(
I 0
rD I

)
x

L∗(1)
r,ω x− λx

=

(
I 0

r(I + V1)D I

)−1 {
(1− ω)I + (ω − r)

(
0 0

−(I + V1)D 0

)}
x

− λ

(
I 0

r(I + V1)D I

)
x

=

(
I 0

r(I + V1)D I

)−1 (
0 0

(−ω + r − λr)V1D −ωV1(I − C)

)
x

=

(
I 0

r(I + V1)D I

)−1 (
0 0
0 V1

)(
−ω(I − (B − S1(I −B))) −ω(I + S1)E

(−ω + r − λr)D −ω(I − C)

)
x

=

(
I 0

r(I + V1)D I

)−1 (
0 0
0 V1

)(
(λ− 1)I 0

0 (λ− 1)I

)
x

= (λ− 1)

(
0 0
0 V1

)
x.

By assumptions, V1 > 0. Hence we obtain the following results.
If λ < 1, then L

∗(1)
r,ω x− λx < 0. By Lemma 2.1, we get ρ(L

∗(1)
r,ω ) < ρ(L

(1)
r,ω) < 1.

If λ > 1, then L
∗(1)
r,ω x− λx > 0. By Lemma 2.1, we get ρ(L

∗(1)
r,ω ) > ρ(L

(1)
r,ω) > 1. �

By the analogous proof of Theorem 2.6, we can prove the following two the-
orems.
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Theorem 2.7. Let L
(2)
r,ω, L

∗(2)
r,ω be the iteration matrices associated of the GAOR

and preconditioned GAOR methods, respectively. If the matrix H is irreducible
with D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0
for some i ∈ {1, 2, · · · , p− 1}, 0 < ω ≤ 1, 0 ≤ r < 1, then either

ρ(L∗(2)
r,ω ) < ρ(L(2)

r,ω) < 1 or ρ(L∗(2)
r,ω ) > ρ(L(2)

r,ω) > 1.

Theorem 2.8. Let L
(3)
r,ω, L

∗(3)
r,ω be the iteration matrices associated of the GAOR

and preconditioned GAOR methods, respectively. If the matrix H is irreducible
with D ≤ 0, E ≤ 0, B ≥ 0, C ≥ 0, bi,i+1 > 0, bi+1,i > 0, ci,i+1 > 0, ci+1,i > 0
for some i ∈ {1, 2, · · · , p− 1}, 0 < ω ≤ 1, 0 ≤ r < 1, then either

ρ(L∗(3)
r,ω ) < ρ(L(3)

r,ω) < 1 or ρ(L∗(3)
r,ω ) > ρ(L(3)

r,ω) > 1.

3. Numerical example

Now, we present an example to illustrate our theoretical results.

Example 3.1. The coefficient matrix H in (1.1) is given by

H =

(
I −B1 U

C I −B2

)
where B1 = (bij)p×p, B2 = (bij)(n−p)×(n−p), C = (cij)(n−p)×p, U = (uij)p×(n−p)

with bii =
1

10×(i+1) , i = 1, 2, · · · , p
bij =

1
30 − 1

30×j+i , i < j, i = 1, 2, · · · , p− 1, j = 2, · · · , p
bij =

1
30 − 1

30×i−j+1 , i > j, i = 2, · · · , p, j = 1, 2, · · · , p− 1

b
′

ii =
1

10×(p+i+1) , i = 1, 2, · · · , n− p

b
′

ij =
1
30 − 1

30×(p+j)+p+i , i < j, i = 1, 2, · · · , n− p− 1, j = 2, · · · , n− p

b
′

ij =
1
30 − 1

30×(i−j+1)+p+i , i > j, i = 2, · · · , n− p, j = 1, 2, · · · , n− p− 1

cij =
1

30×(p+i−j+1)+p+i −
1
30 , i = 1, 2, · · · , n− p, j = 1, 2, · · · , p

uij =
1

30×(p+j)+i −
1
30 , i = 1, 2, · · · , p, j = 1, 2, · · · , n− p.

Table 1 displays the spectral radii of the corresponding iteration matrices
with some randomly chosen parameters r, ω, p. From Table 1, we see that these
results accord with Theorems 2.1-2.8.

Remark: In this paper, we propose three preconditioners and give the compar-
ison theorems between the preconditioned and original methods. These results
show that the preconditioned GAOR methods converge faster than the GAOR
method whenever the GAOR method is convergent.
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Table 1. The spectral radii of the GAOR and preconditioned GAOR iteration matrices

n ω r p ρ ρ∗1 ρ∗2 ρ∗3 ρ1 ρ2 ρ3

5 0.95 0.7 3 0.1450 0.1272 0.1356 0.1338 0.1330 0.1384 0.1376
10 0.9 0.85 5 0.2782 0.2509 0.2665 0.2620 0.2664 0.2726 0.2711

15 0.95 0.8 5 0.3834 0.3553 0.3720 0.3670 0.3777 0.3808 0.3800
20 0.75 0.65 10 0.6350 0.6172 0.6278 0.6248 0.6271 0.6317 0.6303
25 0.7 0.55 8 0.7872 0.7764 0.7829 0.7815 0.7846 0.7861 0.7856
30 0.65 0.55 16 0.9145 0.9099 0.9126 0.9126 0.9122 0.9136 0.9131

40 0.6 0.5 10 1.1426 1.1505 1.1458 1.1489 1.1442 1.1433 1.1436
50 0.6 0.5 10 1.3668 1.3877 1.3753 1.3815 1.3705 1.3683 1.3690
500 0.05 0.1 100 1.9831 2.0564 2.0168 2.0283 2.0028 1.9915 1.9944
1000 0.05 0.05 100 2.8492 2.9810 2.9115 2.9256 2.8710 2.8584 2.8617

2000 0.05 0.05 100 4.7927 5.0690 4.9252 4.9522 4.8298 4.8085 4.8140

Here ρ = ρ(Lr,ω), ρ∗1 = ρ(L
∗(1)
r,ω ), ρ∗2 = ρ(L

∗(2)
r,ω ), ρ∗3 = ρ(L

∗(3)
r,ω ), ρ1 = ρ(L

(1)
r,ω), ρ2 = ρ(L

(2)
r,ω),

ρ3 = ρ(L
(3)
r,ω).
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